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Abstract

A basic task of the coupling a turbulent flow withe solidification processes during the
numerical modeling is taken into account. A numbérthe convectional schemes been
implemented in the OpenFOAM® CFD software is stddigth regard to the accuracy and
the boundness of the obtained numerical solutidve groper evaluation of the temperature
field using unstructured numerical grid is consetkrThe segregated approach to treat the
continuity, momentum and energy equations for draithar incompressible liquid flow is
compared with the fully-coupled PDE system solutidie sensitivity of the two-phase
region growth to the permeability parameter vaoiais investigated along with the turbulent
effect.
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1. INTRODUCTION

It is well known that modeling of the solidificatigprocess is a rather complex task which
includes the calculation of the heat transfer dflfiow and phase transition. The multi-scale
nature of the solidification problem increases ¢bheplexity of the numerical model (Fig. 1).
On the one hand, taking the continuous castinghaxample, the calculation domain spans a
characteristic length scale of meters. The tyffioal regime varies from the highly turbulent
in the core and near the melt injection (e.g. atgbrts of the submerged entry nozzle) regions
to the laminar sublayer in the vicinity of the wallrfaces. On the other hand, the solid phase
grows from the chilled wall, forming initially a wvphase mushy zone which separates the
fully-liquid core region from the fully-solidifiedhell. The two phase mushy zone consists of
the solid dendrites at the length scale of ~100ometers and the interdendritic melt. The
two phase region represents similarity of a poroeslium, which is permeable for the flow.
Additionally the solidified shell including the stlpart of the mush is continuously pulled out
of the casting mold that in turn influences theatigk motion between the turbulent flow and
the dendritic structures.

The progress of the solidification front is not{olescribable, and it is the result of interaction
between the melt flow and the solidification. Retingl is often detected at the impingement
point of the hot jet, which makes the shell profien-uniform. Thereby the transient behavior
of the solidification front along with the varyirtgickness of the two phase region requires
special attention.



The preliminary studies [1] have shown the stronfuence of the turbulence on the
solidification process and vice-versa. Due to tlvamg effect of the turbulence, the effective
thermal conductivity increases significantly wittetturbulence intensity, and this slows down
the growth of the solid shell. On the other hand tendritic mushy zone stabilizes the
flow [2].
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Figure 1. Multi-scale phenomenon of the solidificatprocess

A number of numerical models, dealing with bothidldlow and heat transfer, and also
incorporating the solidification kinetics, are knmovwirom the literature [3-4]. The earliest
solidification models incorporated only the lamirimw [5-8]. The approaches for handling
the turbulence during solidification were firstlgported in contributions [9-12]. Porous
resistance of the two-phase region is combined thighheat transfer [1-2]. The current work
includes a numerical model incorporating the tuehtlflow with the mixture solidification
model. The model is implemented in the CFD softwpeekage OpenFOAM. Some
improvements to the previous solidification moderevmade, and the numerical study and
evaluation of the proper heat transfer simulatiemesented.

2. MODELING TURBULENT FLOW AND SOLIDIFICATION

A number of approaches for modeling solidificatievere reviewed by Dantzig and
Rappaz [13]. Different methods, which are widelgdisn the modern CFD field, either track
all phases separately requiring exact interfacetiposto be known or use an approach of
fixed numerical grid along with an averaging of thieysical properties of the considered
phases. Here a fixed finite volume mesh is usell witollocated or non-staggered variable
arrangement [14-15], where all physical values esliiae same control volumes (CV), and all
flux variables reside on the CV faces. The divecgetheorem is used throughout the
discretization procedure. Unsteady formulationhef Navier-Stokes equations is used to track
time-dependent process.

The following assumptions are made: the multipreystem is described as a viscous fluid
with mixture properties [5-8]; the mixture contimaicombines liquid {) phase and solids()
phase (quantified by the corresponding volume ibast f, and f_), which changes
continuously from a pure liquid region, through tineishy zone (two phase region), to the
complete solid region; the solidified shell alorng tmold walls morphologically represents
the columnar phase (dendrites). The amount of tiid phase is determined with a solid



fraction-temperature curve. The steel slab is omatusly pulled out with a pre-described
pulling (casting) velocityt,, . The solid phase velocity, generally equals the pulling one

for the conventional slab casting, but for the tismb mold with a complex geometry a
surface curvature is to be taken into account.

The Navier-Stokes equations with an assumptiorhefliquid incompressibility are used to

simulate the melt velocity. Only one set of equadios formulated for both phases in the
Eulerian frame of the reference. The mixture veéjocid = f,0, + 0, represents a weighted

sum of the liquid and solid velocities with the pbdractions as weighting factors. Thereby,
the equation system consisting of the continuity am@mentum equations is

O0i=o0, 1)
P2+ g Hu) = ~Cip + 0 a5 + 2)

where (., is the effective dynamic viscosity of the liquigthich includes laminar and
turbulent parts and varies throughout the caloutatiomain due to the turbulence effect. The
influence of the mush region on the flow is definmdthe source ten$, in the momentum

equation (2) mirroring a drag force inside the pereegion. The Blake-Kozeny law is used to
model the porous resistance of the dendritic strestbased on the relative velocity:

§ =-f tu-u), 3)

where g, is the laminar viscosity andli — U, i¥ the relative velocity of the mixture in the
porous region. The permeabilit)k() of the mushy zone depends on the solid voluntifna
and the characteristic length (the primary arm spad, [16]) of the dendrites:
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Prescribedf,-T relations of different types (e.g. linear or Gudhi-Scheil) are used to track
the evolution of the solid phase.

The complexity of the solidification model at theepence of the turbulence arises mostly
from the flow regime transition from its fully-liggh core, through a liquid-solid two phase

region, to a fully-solid region with a prescribedwing velocity. To deal with such problem a

comprehensive model is employed to incorporate strgetion of the turbulent core along

with a laminar sublayer and a “solid body” behavimrthe limit casef, = 1using significant

damping of the flow inside multiphase region. A R&NKurbulence model is used based on a
low Reynolds numbek —& model, as introduced by Prescott and Incroperk2[9-
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where Pr, =1, and Pr,, = 13are the turbulent Prandtl numbers forand £, respectively;

G isthe shear production of turbulence kinetic ggpef9-12]. A turbulence dumping
mechanism is similar to that being used for the matm equation (2) introducing a linear
reduction of the turbulent parameters in the mush.

The evolution of the solid phase is calculated etiog to the temperature by solving the
energy equation. The energy equation of the mixbaiemnar solidification applicable for
the continuous casting (CC) can be derived fromEilerian two-phase energy equations:

2 (f.an)+0tlfach)=0ta 107 )+Q,, (8)
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The liquid enthalpyh is defined

h =h,+L, (10)

where h,, further denoted simply al, is a sensitive enthalpy of the solild. is the latent
heat (heat of fusion), and the ter@, is the energy exchange rate between the solid and
liquid. Due to the energy conservation conditidns term exists in both equations but with
the opposite signs.

In the mixture solidification model both phases assumed to have the same density,
P, =P, =p, and same temperatureg,=T, =T . Hereby, summing up equations (8) to (9)
and employing enthalpy formulation (10), we obtain:

P2+ tfan)+ o S+ AL ) = 0 faT). (11)

In the reference of the mixture model the teffi{fd,) is unknown in the transport

equation (11) because the individual quantitiethefsolid and liquid are not considered and
it is not possible to track them based on the satmut results. In spite of the specified
intricacy it is possible to resolve the ambiguity the denoted advection term[ﬁfI Ul).

Thereto one should employ the continuity equatibntogether with the definition of the
mixture velocity @i = f,u, + f0,),

|j[ﬂflal): -0 [qfsas) (12)
The solid velocities are estimated based on thendemy conditions, assumed Young's
modulus and the Poisson ratio of the considere@mahtIn view of the factf, + f. = ZJnd
including the turbulence influence for the therrahductivity a., = a, +a,, the final form
of the energy equation (11) would be

‘ths + L0 fa,). (13)

p 20+ p0{oh) = Defa, OT)+ AL



Some numerical investigations have shown that serwative form of the advective term is
less preferable than a gradient one:
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If compared to the previous investigations [1-2,-1B], latent heat source term is
supplemented with the additional componehf 1l based on the divergence of the solid

velocities. The latest exhibits when the curvatoiré¢he mold surface is significant and it is
necessary to treat the complex geometries of thalation domain boundary. The simplified
form of the energy equation (14) for the constatidsvelocity t, =0, for the case of the

straight mold geometry is

p% + p0 f{uh) = 0o, O )+ oL L + pla,[f, + pLf,0 . (14)
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Governing equations of the mixture solidificatiomael defined in the current section were
employed to design a stand-along solidificatiorveolising the OpenFOAM CFD software
package. The solver was verified based on the ewrpatal data and results of the numerical
simulations using different CFD software [19]. Relet results for the real casting processes
were reported in the previous contributions ofabéors [17-18].

3. CONVERGENCE AND ACCURACY OF TURBULENT FLOW SIMWATION

The proper prediction of the flow pattern is inadly of the great importance for the
solidification model. However, some issues conegyriurbulent flow were detected during
numerical simulation using designed solidificati@olver within the framework of
OpenFOAMI. Therein a detailed description is presented.

A general flow pattern in the continuous castin@€)@ presented in Fig. 2 for the case of the
standard OpenFOAM transient turbulent solver being used for the sdamrder of accuracy.

To visualize a characteristic flow regime in thestoay mold, a flow type function is
introduced:
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where D =§(Du +(Du) ) is the symmetric part anf ZE(DU —(Du) ) is the skew part of

the velocity gradient tensor. Based on thevalue a flow regime is defined as

-1 rotationalflow,
A =4 0 simpleshearflow, a7
1 planarextentionaflow.

The solution is obtained with a strict convergendterion setting the residuals value to the
level of ~10°. In Fig. 2 (a)-(d) one can see the velocity fieldrbulent kinetic energy,
effective viscosity and flow type function, whicpegifies eddy structure of the flow.

At first sight simulation results seem satisfactoay nice complex turbulent structure is
resolved similar to those obtained with large edagyulation (LES) method. However, in-
depth analysis of the turbulent kinetic energy (Rigb)) shows a failure of convergence.



Corresponding field seems to be “frozen” and doatsvary with time. The cells with the
highest turbulent energy are observed around thietswf the SEN ports which fit to the
unstructured grid location with the highly skewddngents due to the complexity of the
calculation domain. These high values are not praned to the neighboring regions, thkis
and € parameters remain close to zero in the most regibimereby the turbulent viscosity is
estimated as

. . k?
kl,lertlo’ut B kl,lgrl]o(’oc" ?) =0. (18)
It is overall too low and, as the consequence, dffiective viscosity i, does not vary

distinctly from the initial laminar viscosity (Fi@.(c)). The described numerical error leads to
the under-estimation of the mixing being typicallyserved for the turbulent flows.

Summarizing the above discussion, a highly resoluebulent structure on the fairly poor
numerical grid using RANS approach is the result tlé miss-converged numerical
procedure. In the following part of the section siyenptoms are interpreted and a “remedy” is
proposed.
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Figure 2. Flow pattern in the CC mold obtained witbstandardsolver:
(a) velocity field; (b) turbulent kinetic energy)(effective viscosity; (d) flow type function.

It was found that actually a source of the denddddre resides in the residuals normalization
procedure of the OpenFOAM The initial linear system of equations being sdiafter
discretization procedure can be written as

Axy=b (19)
v ={y,} andb ={b} are n-sized vectors of scalars or tensors in decme with the type of

the field values to be calculated ={a,.j} is a scalar matrix (n x n). Currently the block

matrix treatment is developed in the OpenFOAM tove a full coupling between an
arbitrary number of the partial differential eqoats (PDE).

Further let's define
A=Axy’, (20)



wherey’ stands for the obtained numerical solution, thennbatrix residual is
R=b-A. (21)

It should be noted thaR is actually a scalar or tensor vector with the hamof elements
{r} equal to the number of the finite volume cellsef@by, to estimate the overall error of

the whole domain, residuals normalization with tiermalization factorN is applied in
OpenFOAMI:

— 1
R= Y @2)
allcells
The normalization factoN is calculated as
N= Sfja-a] -3, @)
allcells
where
A=Axy, (24)
2.4,
S 25)
J .
D ay
_ 1
Y= EZ‘/II . (26)

At the convergence of Eq. (17) the relationshiqf (21) can be reduced to the simple form

N = ZZ||b,||. (27)

Thereby according to Eq. (27), normalization fadtongly depends on the source terms.
Unstructured grid being exploited for the compleompetries introduces a huge amount of
the non-orthogonality, which should be treated mrgradient calculation when the high
order convectional schemes are used. The commawoagpis based on the non-orthogonal
correction procedure, which actually results in #uglitional source terms in the right-hand
side (RHS) of linear system (19).

Normalization factor utilized in the OpenFOAMrepresents so called, norm. Skewed cell

produce an artificially high rate of the RHS souteems, hereby decreasing residuals level to
the under-estimated one. Thus a linear solver tetbat convergence criterion is already
reached and the iteration process is stopped.

Possible solutions are either to modify the OpenMODA libraries to utilize proper
normalization, which is not prone to similar error, to set the residuals level in solution
control dictionary to the artificially strict levelf 10**~10"4 and restrict maximum number
of the iterations along with the high relative talece 1G~10°. The latest means that we
improve the solution accuracy by 2-3 orders ofrtfagnitude.



The revised results using the adjusted convergeritegion for the turbulent flow simulation
are presented in Fig. 3. A more smooth distributbrihe calculated quantities is observed
indicating a high turbulent mixing. All equationttbe model are consequently solved and no
“freezing quantity” occurs. It doesn’t show the lilig resolved eddy structures any more, as
what we have seen in Fig. 2, but the numericalt®olus correct according to the RANS
model hypothesis of the averaged instantaneousiteloscillations. On this base the small
vortices are not detected within the frames of RANSvever granting enough information of
the transient turbulent flow for further solidifican modeling.
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Figure 3. Flow pattern in the CC mold for the cakthe enhanced convergence settings:
(a) velocity field; (b) turbulent kinetic energy)(effective viscosity; (d) flow type function.

Additionally it is possible to correct some erréws the k — £ transport, which are connected
with the inaccuracy in the solution of the conttguequation (1). Conservative form of the
convectional term in Eq. (5) is

0 tfpuk) = o0 k). (28)

Induced incompressibility correction can be expedsss

=0 +86 = 0 =0-9, (29)
where i’ represents the exact solutian,is the calculated one ari is an error vector. The
exact solutioni” fulfils the continuity equation (1), thus

O =0 > O@i=00 +06B=00. (30)

So if it would be possible to get the exact solutab each of iterations, a gradient form could
be written for Eq. (28) omitting the constant déns the expression:

O fo'k)=a'Tk. (31)
Next according to Eq. (29) the calculation erroesimated:
Err =0{ok)-0'Ok =kO @ +0 Ok + kO B+ 60k —a'0k . (32)

Applying Eq. (30) we get
Err = kO 3 + 60k = kO i + 80k . (33)



Thereby performing a correction for the convectldaem in the form

0 u'k)= 0 fuk) - kO m (34)
the incompressibility estimation error is reduce®tlk .
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Figure 4. Turbulent energl distribution calculated using
advection term in (a) the divergent form and
(b) with the incompressibility correction.

Described correction approach was tested and apgrdor the transport of turbulent
quantities on the unstructured grids. As an exaniplé€ig. 4(a) one can see the calculated
distribution of the turbulent kinetic energy at t8&N port region. The highest values are
detected at the sharp edge of the port where thst tudbulence is generated. However the
artificially low k value is detected for the highly skewed mesh eterfldue color in the
marked area). After applying the convection termrexdion, error value is vanished and more
smooth distribution of thé& field is observed (see Fig. 4(b)).

4. MESH REFINEMENT FOR SOLIDIFICATION FRONT TRACKIN

Traditionally mesh refinement is performed by inoing boundary layers (BL) at the high
gradient regions e.g. near walls and phase intesfadtilization of the BL is also a well
known technique to treat the laminar sublayer ef timbulent flow. However this mesh is
static and does not track the transient behavithetonsidered phenomenon.

During solidification simulation of the continuogssting it was observed that a solid shell
thickness is under-estimated if compared to thdityed&xtension of the boundary layer
produces more accurate simulation results withengblidifying region, but is an inefficient
approach, because it guides to the enormous nuofiloetls, considerable part of which is in
the totally solidified region, where the high mesholution is actually not necessary.

To find a proper mesh refinement method it is ne&gsto study the correlation between the
solid phase fraction and the temperature [1, 13]:



0 T=2T,

liquidus ?
fs =41- ((Tf - T) /(Tf - -I—quuidus))l/(kp_l) Tliquidus >T> Teutectic’ (35)
1 T >T.

eutectic

One can see that the relation of Eq. (35) is nabtenon-linear. For instance, it is desired to
have at least 10 grid points within the mush zdfife. can either intend to track the solid
fraction (Fig. 5(a)) with the regular stepping beém resolved values within the BL or rely
upon the temperature distribution (Fig. 5(b)). Reespely the grid points in the appropriated
boundary layers are mapped in Fig. 6. Generallghituld be noted that the 100% solid
represents the wall surface and adjacent regidhe ighell thickness increases.
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Figure 5. Scheil curve for thé, —T correlation:
(a) regular f, stepping and (b) reguldr stepping.
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Figure 6. Grid points density according to (a)stepping and (bJ regular stepping.

If the solid fraction is used as the refinementdacthe temperature is better resolved at the
starting point (solidification front) of the two pbe region (Fig. 6(a)). However there is lack



of accuracy for its prediction near the walls whéne most temperature gradients are
observed due to the contact with the chill. If theshing procedure is aimed to improve the
temperature distribution, there is an issue with phoper calculation of the phase fraction
because of the insufficient number of the grid poiwwithin the mush zone. They are mostly
concentrated in the vicinity of the 100%-solid swd (Fig. 6(b)) where the solid shell is
already formed and no medium motion occurs apatiepulling process.

Thereby it is necessary to have a compromise ®gthd adjustment, taking into account the
fact that the number of mesh cells after refinemeniimited by the computer hardware
resource. In the current work a static method wsesi dor the grid refinement. First of all, a
coarse mesh was used with the introduced BL matlhe chill walls using third party
meshing tool (Fig. 7(a)). As the next step, seveefihements were done by means of the
refineMeshtool according to some semi-empirical criteria fiwe cells with the most
difference in the solid phase and temperature ildigtons. Additionally a limiting of the
refinement only in the lateral direction was apglie
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Figure 7. Numerical grid for the solidification set:
(a) initial one created with the Gambit BL;
(b) after the refinement with the OpenFOAMool

A mesh refinement procedure was repeated seriattii &me when the coarser grid solution
has reached the quasi-steady state (e.g. a cehtelinthickness was obtained). Corresponding
results are shown in Fig. 7(b).

5. BOUNDNESS AND ACCURACY OF THE HEAT TRANSFER CAILLATION

During the numerical studies of the solidificatiprocesses with the designed solidification
solver [17-18] it was detected that a temperatwrer-estimation occurred. It leads to the
unwanted side effects, such as the remelting dtigetincreased ‘superheat’ being brought to
the solidified region. In accordance with the perfed discretization analysis, the energy
equation Eq. (14) was proved to be a source of getemperatures. It was also revealed that
the same behavior occurred even without taking actmunt the solidification (Fig. 8).

Let’s consider transport equation for the tempegatu

aT

o +00oT) =0k, 0T, (36)

a : e
where k,, =—" represents effective thermal diffusivity.
p

Next, Eqg. (36) is split into convectional and dgfive parts:

T
el ffur)=0 (37)



%—I—Du(eﬁm:o. (38)

Above Eq. (37)-(38) are solved together with theviiaStokes equations for the flow and
turbulence. The same heat flux boundary condit®ifoathe solidification modeling is used.
After the turbulent flow and heat transfer are deped, the analysis of the temperature field
is carried out. Observations indicated that themegion of the temperature overshoots

AL =T -T.4 €xceeded 560 K for the convection equation (3Meraas for the

error m

diffusive one according to Eq. (38) the violati@vél remained insignificant. Therefore, the
discretization procedure of the convectional parthe energy equation is most critical and
should be improved to ensure physically correatltes
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Figure 8. Volume elements with (a) error valuesrked with red) and
(b) the scaled temperature overshoots.

It is known [20] that all convectional schemes bancategorized in two groups: those, which
guarantee and maintain the boundness of the nushesatution, and those, which provide
higher precision of discretization. Schemes of finst category are mostly of the low

accuracy and introduce considerable level of thmerical diffusion. Hereupon it becomes
impossible to trace the strong gradients of thatgmi, which are artificially smoothed.

Convectional schemes of the second category amgeptim the spurious oscillations of the
numerical solution and quite often produce unptatsiesults. On the one hand such behavior
can be relatively easy detected for the scalaspart problems with the well know variation
range. On the other hand, when minimum and maxinvaines are not fixed or some
gradient boundary conditions are applied, a quesggarding validation criterion arise.

Due to lack of a simultaneously bounded and aceusaheme, a compromise should be
found. Usually TVD and NVA approaches are used dmlune stability, boundness and
accuracy for the discretization procedure.

To verify the numerical behavior of the convectiorsthemes implemented in the
OpenFOAM CFD software a stationary transport eguatias solved:

0 fea) =0, (39)



where ¢ is a passive scalar. A simulation domain of thechenark is a 2D square (Fig. 9).

Left and bottom sides correspond to the inlet,trighd top are the outlet boundaries. Step
profile of the scalag brought by the flow from the left is defined as

0 for O< x<%,
p= : (40)

1 for l5xs1.
6

Right and the left boundaries are set to the zeadignt condition.

outlet
¢=1 U, = const
o
S
/{ 5
¢=0 ¢=0

Figure 9. Initial setup of the 2D benchmark fotitegthe convectional schemes.

To simplify the interpretation of the test reswésocity represents a unit vector with the fixed

mesh-to-flow angle,# =30". Numerical grid is uniformly spaced and consists36x30
control volumes. Comparison between the analytarad the numerical solutions of the
transport equation Eq. (39) is made across thécaetine, which is 20 CV downstream from
the left inlet boundary. The exact solution in tbése is

0 for O< y<4+\/§,
63

= (41)
1 for 4+\/§s y<1

6v3

As provided by the analytical solution, the transpd step profile should remain sharp.
Hereby, the behavior of the numerical schemes @&ueated according to following criteria:
diffusivity of the scheme (how the sudden changthefsolution is smeared due to the lack of
discretization accuracy) and the ability of theesole to keep the physical boundaries of the
transported scalar.

9,

wln

According to advanced application practice the umawidifferencing (UD), central
differencing (CD), linear-upwind differencing (LUR21]), self-filtered central differencing
(SFCD [22]) and the Gamma [20] schemes were testedl compared. Figs. 10-15,
representing the test results, contain the colqr (t&dt) of the simulated scalar along with the
comparison plot of the exact and modeled profiletha position 20 CVs downstream from
the left boundary (top-right) and the numericabedistribution pattern (bottom-right).
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Figure 10. Simulation results of a passive scatarsport (UD scheme)

The upwind differencing (UD) scheme provides thestmbounded solution without any

additional numerical tricks due to its physicalurat resulting in the strongly smoothed step
profile though (Fig. 10). Thus UD scheme is todwdiive and, despite it conserves scalar
being transported within desired range, it can tackle the strong gradient (which occur
rather often during solidification processes). Wh de widely used for the starting period of
the simulation procedure to stabilize it.
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Figure 11. Simulation results of a passive scatarsport (CD scheme)

Central differencing (CD) scheme is more accuraité follows the sudden change of the
simulated value (Fig. 11). However it produces squg oscillations of the numerical solution

up- and downstream. Thus a positive scalar carhneegative values as well as overshoots of
the solution are observed.

Linear upwind differencing (LUD) scheme is designediake advantages of both UD and
CD. It combines the boundness of the former andglsrthe accuracy of the latter. However

according to the test results it still produces lsraader- and overshoots of the solution
(Fig. 12).

To exclude the unboundedness of the numericalisalua cell / face limiting of the gradient
is applied either between the neighboring volumestathe interface between them. Such
procedure is aimed to avoid unphysical peaks ofctdieulated gradients between the cells.
After cell / face correction is applied one can elgs that LUD scheme tracks both the
sharpness of the step profile and the boundnette dfimulated value (Fig. 13).
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Figure 12. Simulation results of a passive scadarsport (LUD scheme)
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Figure 13. Simulation results of a passive scatarsport (LUD scheme with cell limiting)
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Figure 14. Simulation results of a passive scatarsport (SFCD scheme with cell limiting)

The similar tests were carried out for the SFCD #redl Gamma schemes. One can see the
results (Fig. 14 and Fig. 15) with cell limitingdreapplied. As opposed to LUD scheme both

of them lead to some overshoots ~1% of the maximalue at the step profile and seem to
be a little bit more diffusive than LUD one.
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Figure 15. Simulation results of a passive scatarsport
(Gamma scheme with cell limiting)

Based on the above analyses linear-upwind difféengnscheme was proposed for the
discretization of the convectional term, togeth@hwhe cell limiting of the gradients. Both

supplements of the initial algorithm were provedeeffective to maintain the boundness of
the solution.

6. NON-LINEARITY OF THE MODEL

It was already mentioned that the coupling betwienturbulent flow and solidification is
strongly non-linear. A latent heat recovery methed to the segregated approach for the
solidification solver (Fig. 16). Thereby all theuagions are solved sequentially utilizing an
under-relaxation procedure for updating the pon@ssstance and heat source terms. Under-
relaxation method is known as a reliable tool fee hon-linear problems; however it is
characterized by the significant number of the rimdé iteration loops of the solution
algorithm, especially for the transient tasks.

Iterations

(8]

TIME LOO?

N Yes

Figure 16. Flow chart of the solution algorithm.

One can evidently observe how the number of thatitns drastically increases with the
relaxation parameter decrease (Fig. 17). Some iodiion simulations require the under-



relaxation factora. as small as 0.05. It implies that each time stefh® calculation might
need as much as 100-200 steps to get the solubamerged. A typical solidification
simulation would run for weeks on the relativelynyaoful hardware.
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Figure 17. Convergence behavior of the under-réil@xgrocedure

The ongoing work is devoted to make use of thedaflacity of the OpenFOAM extended
version [23] to deal with the block-matrix methoolgy for the strongly coupled PDE
systems. It permits to avoid the additional itematprocess for coupling and improve the
convergence rate.
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Figure 18. Drag force coefficient as function gjuid volume fraction:
a) whole two-phase region; b) near the end of saadion.

Another issue of non-linearity is related to thenpeability law of porous media being used in
the model. Previous studies [1] have shown thattdube high porous resistance of the two
phase region a melt flow can only penetrate in® rtiush as deep #s=20~30 .%he
porous resistance, here also named as drag foeféceent, can be evaluated by inverting
Eq. (4):
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where d, according to the FLUENT User Guide [19], is a small number in the magratud

of 10 ~107°. A question arises if thé value influences the permeability dramaticallyisTh

comes really into effect, e.g. for some steel gsasdkere minimal liquid fraction, remaining

in the mush, is~5x107°. The term f*> ~10° is actually 2 orders of the magnitude smaller
2

than d in the pre-factor:—s.
f°+0

Performed studies have shown (Fig. 18) that théerdiice of drag coefficients due to
different J, as calculated by Eqg. (42), takes only effecttfor liquid fraction lower than
20 %. At this stage of solidification the liquid hés almost solidified and there is no
significant convection. Therefore, the assumed nmigaleform of the permeability law does
not affect the final simulation result of solidéiton. On the contrary it helps to enhance the
stability and the convergence rate of the numesoalition by reducing the difference in the
matrix diagonal coefficient and bounding the pormesstance to a reasonable range.

7. SUMMARY DISCUSSIONS

In this work a numerical model considering turbalBow and solidification is implemented

in the OpenFOAM® CFD software. The treatment ofgbkdification latent heat considering
the relative motion of the dendritic structurestloé continuous casting with the complex
mold geometries (curvature of the mold) is impravBdsed on the Eulerian formulation of
the energy equation a proper form of the latent hdaection term is considered.

In the framework of the RANS approach the turbuéetransport quantitie and &£, are
analyzed. The convergence criterion for bktland £ transport equations was adjusted based
on the analyses of the residual normalization. TH@mpressibility corrections for the
convectional terms in thke and & equations are investigated and approved.

A static mesh refinement method is utilized to ioyw the prediction of the solid shell
formation. The on-going developments are devotedh& dynamic mesh adjustment, i.e.
automatic refinement and coarsening during theugation.

A number of the convectional schemes, which hawnbmplemented in the OpenFOAM®
CFD software, are checked with regard to the acguend boundness of the numerical
solution. It is found that the face or cell limtgif the gradient calculation is required for the
convectional term in the energy equation to avbil gpurious oscillations of the numerical
solution. Hereby the evaluation of the temperafigie using unstructured numerical grid is
made, and the heat transfer part of the solidibcamodel is improved.

The under-relaxation procedure in the frame of $bgregated approach is considered to
enhance the coupling efficiency of the fluid flowtlhwthe evolution of the two-phase region.
On the one hand it is claimed to be rather statmethe other hand the under-relaxation
procedure is proved to be inefficient and compateti-time consuming one. The fully
coupled solution using the new block-matrix libraryd solver of the OpenFOAMextended
version is supposed to be a new alternative forsthengly coupled problems such as the
solidification. It is significant for the non-linedatent heat adjustment formulation and also
for the complex permeability law of the two phasgion as well.
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NOMENCLATURE

c, J-kg"-K*  specific heat

C..C,.C, [-] constant of the standakd—- & model

f,, f. [-] volume fraction of liquid and solid phase

G kg- mi*-s® shear production of turbulence kinetic energy
h J-kg* enthalpy

Nt J-kg' reference enthalpy at temperatdig

k m? §2 turbulence kinetic energy per unit of mass

K m? permeability

L J-kg* latent heat

p N- m? pressure

P [-] Prandtl number for turbulence kinetic eneigy
Pr., [-] Prandtl number for turbulence dissipation rate
S, kg- mi*-s® source term for turbulence kinetic energy

S, kg- m*-s* source term for turbulence dissipation rate
g, kg- m*s? source term for momentum equation

t S time

T K temperature

Tt K reference temperature for,,

T, K melt point of pure solvent

Tostectic K temperature of eutectic reaction

Tiquidus K liquidus temperature of alloy

a m-s' velocity of the mixture

a, m-s* liquid velocity

0, m-s* solid velocity

£ m? 3 turbulence dissipation rate per unit of mass
a W m*-K? thermal conductivity

a. W m'-K*' effective thermal conductivity due to turbulence
a, W m*-K* turbulence thermal conductivity

A m primary dendrite arm spacing

P kg- mi° density

Ui kg- m*-s* dynamic effective viscosity due to turbulence
U, kg- m*-s* dynamic liquid viscosity

U, kg- m*-s* dynamic turbulence viscosity
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