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Abstract 

A basic task of the coupling a turbulent flow with the solidification processes during the 
numerical modeling is taken into account. A number of the convectional schemes been 
implemented in the OpenFOAM® CFD software is studied with regard to the accuracy and 
the boundness of the obtained numerical solution. The proper evaluation of the temperature 
field using unstructured numerical grid is considered. The segregated approach to treat the 
continuity, momentum and energy equations for the laminar incompressible liquid flow is 
compared with the fully-coupled PDE system solution. The sensitivity of the two-phase 
region growth to the permeability parameter variation is investigated along with the turbulent 
effect. 
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1. INTRODUCTION 

It is well known that modeling of the solidification process is a rather complex task which 
includes the calculation of the heat transfer, fluid flow and phase transition. The multi-scale 
nature of the solidification problem increases the complexity of the numerical model (Fig. 1). 
On the one hand, taking the continuous casting as an example, the calculation domain spans a 
characteristic length scale of meters. The typical flow regime varies from the highly turbulent 
in the core and near the melt injection (e.g. at the ports of the submerged entry nozzle) regions 
to the laminar sublayer in the vicinity of the wall surfaces. On the other hand, the solid phase 
grows from the chilled wall, forming initially a two phase mushy zone which separates the 
fully-liquid core region from the fully-solidified shell. The two phase mushy zone consists of 
the solid dendrites at the length scale of ~100 micrometers and the interdendritic melt. The 
two phase region represents similarity of a porous medium, which is permeable for the flow. 
Additionally the solidified shell including the solid part of the mush is continuously pulled out 
of the casting mold that in turn influences the relative motion between the turbulent flow and 
the dendritic structures. 

The progress of the solidification front is not pre-describable, and it is the result of interaction 
between the melt flow and the solidification. Remelting is often detected at the impingement 
point of the hot jet, which makes the shell profile non-uniform. Thereby the transient behavior 
of the solidification front along with the varying thickness of the two phase region requires 
special attention. 



The preliminary studies [1] have shown the strong influence of the turbulence on the 
solidification process and vice-versa. Due to the mixing effect of the turbulence, the effective 
thermal conductivity increases significantly with the turbulence intensity, and this slows down 
the growth of the solid shell. On the other hand the dendritic mushy zone stabilizes the 
flow [2]. 

 
Figure 1. Multi-scale phenomenon of the solidification process 

A number of numerical models, dealing with both fluid flow and heat transfer, and also 
incorporating the solidification kinetics, are known from the literature [3-4]. The earliest 
solidification models incorporated only the laminar flow [5-8]. The approaches for handling 
the turbulence during solidification were firstly reported in contributions [9-12]. Porous 
resistance of the two-phase region is combined with the heat transfer [1-2]. The current work 
includes a numerical model incorporating the turbulent flow with the mixture solidification 
model. The model is implemented in the CFD software package OpenFOAM. Some 
improvements to the previous solidification model were made, and the numerical study and 
evaluation of the proper heat transfer simulation are presented. 

2. MODELING TURBULENT FLOW AND SOLIDIFICATION 

A number of approaches for modeling solidification were reviewed by Dantzig and 
Rappaz [13]. Different methods, which are widely used in the modern CFD field, either track 
all phases separately requiring exact interface position to be known or use an approach of 
fixed numerical grid along with an averaging of the physical properties of the considered 
phases. Here a fixed finite volume mesh is used with a collocated or non-staggered variable 
arrangement [14-15], where all physical values share the same control volumes (CV), and all 
flux variables reside on the CV faces. The divergence theorem is used throughout the 
discretization procedure. Unsteady formulation of the Navier-Stokes equations is used to track 
time-dependent process. 

The following assumptions are made: the multiphase system is described as a viscous fluid 
with mixture properties [5-8]; the mixture continuum combines liquid (l ) phase and solid (s) 
phase (quantified by the corresponding volume fractions 

l
f  and sf ), which changes 

continuously from a pure liquid region, through the mushy zone (two phase region), to the 
complete solid region; the solidified shell along the mold walls morphologically represents 
the columnar phase (dendrites). The amount of the solid phase is determined with a solid 



fraction-temperature curve. The steel slab is continuously pulled out with a pre-described 
pulling (casting) velocity pullu

v
. The solid phase velocity su

v
 generally equals the pulling one 

for the conventional slab casting, but for the thin-slab mold with a complex geometry a 
surface curvature is to be taken into account. 

The Navier-Stokes equations with an assumption of the liquid incompressibility are used to 
simulate the melt velocity. Only one set of equations is formulated for both phases in the 
Eulerian frame of the reference. The mixture velocity ssufufu

vvr
ll

+=  represents a weighted 

sum of the liquid and solid velocities with the phase fractions as weighting factors. Thereby, 
the equation system consisting of the continuity and momentum equations is 
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where effµ  is the effective dynamic viscosity of the liquid, which includes laminar and 

turbulent parts and varies throughout the calculation domain due to the turbulence effect. The 
influence of the mush region on the flow is defined by the source tem DS

v
 in the momentum 

equation (2) mirroring a drag force inside the porous region. The Blake-Kozeny law is used to 
model the porous resistance of the dendritic structures based on the relative velocity: 
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where 
l

µ  is the laminar viscosity and )( suu
rr −  is the relative velocity of the mixture in the 

porous region. The permeability (K ) of the mushy zone depends on the solid volume fraction 
and the characteristic length (the primary arm spacing 1λ  [16]) of the dendrites: 
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Prescribed sf -T  relations of different types (e.g. linear or Gulliver-Scheil) are used to track 

the evolution of the solid phase. 

The complexity of the solidification model at the presence of the turbulence arises mostly 
from the flow regime transition from its fully-liquid core, through a liquid-solid two phase 
region, to a fully-solid region with a prescribed moving velocity. To deal with such problem a 
comprehensive model is employed to incorporate a description of the turbulent core along 
with a laminar sublayer and a “solid body” behavior for the limit case 1s =f  using significant 

damping of the flow inside multiphase region. A RANS turbulence model is used based on a 
low Reynolds number ε−k  model, as introduced by Prescott and Incropera [9-12]: 
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where 1Pr kt, = , and 3.1Prt, =ε  are the turbulent Prandtl numbers for k  and ε , respectively; 

G  is the shear production of turbulence kinetic energy [9-12]. A turbulence dumping 
mechanism is similar to that being used for the momentum equation (2) introducing a linear 
reduction of the turbulent parameters in the mush. 

The evolution of the solid phase is calculated according to the temperature by solving the 
energy equation. The energy equation of the mixture columnar solidification applicable for 
the continuous casting (CC) can be derived from the Eulerian two-phase energy equations: 
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The liquid enthalpy lh  is defined 

Lhh sl += , (10) 

where sh , further denoted simply as h , is a sensitive enthalpy of the solid. L  is the latent 

heat (heat of fusion), and the term slQ  is the energy exchange rate between the solid and 

liquid. Due to the energy conservation condition, this term exists in both equations but with 
the opposite signs. 

In the mixture solidification model both phases are assumed to have the same density, 
ρρρ == sl , and same temperatures, TTT sl == . Hereby, summing up equations (8) to (9) 

and employing enthalpy formulation (10), we obtain: 
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In the reference of the mixture model the term ( )ll uf
v⋅∇  is unknown in the transport 

equation (11) because the individual quantities of the solid and liquid are not considered and 
it is not possible to track them based on the simulation results. In spite of the specified 
intricacy it is possible to resolve the ambiguity in the denoted advection term ( )ll uf

v⋅∇ . 

Thereto one should employ the continuity equation (1) together with the definition of the 
mixture velocity ( ssufufu

vvr
ll

+= ), 
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The solid velocities are estimated based on the boundary conditions, assumed Young’s 
modulus and the Poisson ratio of the considered material. In view of the fact 1s =+ ff

l
 and 

including the turbulence influence for the thermal conductivity tl ααα +=eff , the final form 

of the energy equation (11) would be 
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Some numerical investigations have shown that a conservative form of the advective term is 
less preferable than a gradient one: 
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If compared to the previous investigations [1-2, 17-18], latent heat source term is 
supplemented with the additional component uLfs

v⋅∇ρ  based on the divergence of the solid 

velocities. The latest exhibits when the curvature of the mold surface is significant and it is 
necessary to treat the complex geometries of the simulation domain boundary. The simplified 
form of the energy equation (14) for the constant solid velocity pulls uu

vv =  for the case of the 

straight mold geometry is 
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Governing equations of the mixture solidification model defined in the current section were 
employed to design a stand-along solidification solver using the OpenFOAM CFD software 
package. The solver was verified based on the experimental data and results of the numerical 
simulations using different CFD software [19]. Relevant results for the real casting processes 
were reported in the previous contributions of the authors [17-18]. 

3. CONVERGENCE AND ACCURACY OF TURBULENT FLOW SIMULATION 

The proper prediction of the flow pattern is invariably of the great importance for the 
solidification model. However, some issues concerning turbulent flow were detected during 
numerical simulation using designed solidification solver within the framework of 
OpenFOAM. Therein a detailed description is presented. 

A general flow pattern in the continuous casting (CC) is presented in Fig. 2 for the case of the 
standard OpenFOAM transient turbulent solver being used for the second order of accuracy. 

To visualize a characteristic flow regime in the casting mold, a flow type function is 
introduced: 
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the velocity gradient tensor. Based on the Λ  value a flow regime is defined as 
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The solution is obtained with a strict convergence criterion setting the residuals value to the 
level of ~10-6. In Fig. 2 (a)-(d) one can see the velocity field, turbulent kinetic energy, 
effective viscosity and flow type function, which specifies eddy structure of the flow. 

At first sight simulation results seem satisfactory: a nice complex turbulent structure is 
resolved similar to those obtained with large eddy simulation (LES) method. However, in-
depth analysis of the turbulent kinetic energy (Fig. 2 (b)) shows a failure of convergence. 



Corresponding field seems to be “frozen” and does not vary with time. The cells with the 
highest turbulent energy are observed around the outlets of the SEN ports which fit to the 
unstructured grid location with the highly skewed elements due to the complexity of the 
calculation domain. These high values are not transported to the neighboring regions, thus k  
and ε  parameters remain close to zero in the most regions. Thereby the turbulent viscosity is 
estimated as 
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It is overall too low and, as the consequence, the effective viscosity effµ  does not vary 

distinctly from the initial laminar viscosity (Fig. 2(c)). The described numerical error leads to 
the under-estimation of the mixing being typically observed for the turbulent flows. 

Summarizing the above discussion, a highly resolved turbulent structure on the fairly poor 
numerical grid using RANS approach is the result of the miss-converged numerical 
procedure. In the following part of the section the symptoms are interpreted and a “remedy” is 
proposed. 

 
a)   b)   c)   d) 

Figure 2. Flow pattern in the CC mold obtained with the standard solver: 
(a) velocity field; (b) turbulent kinetic energy; (c) effective viscosity; (d) flow type function. 

It was found that actually a source of the denoted failure resides in the residuals normalization 
procedure of the OpenFOAM. The initial linear system of equations being solved after 
discretization procedure can be written as  

bψA =×  (19) 

{ }iψ=ψ  and { }ib=b  are n-sized vectors of scalars or tensors in accordance with the type of 

the field values to be calculated, { }ija=A  is a scalar matrix (n × n). Currently the block 

matrix treatment is developed in the OpenFOAM to provide a full coupling between an 
arbitrary number of the partial differential equations (PDE). 

Further let’s define 
*ψA∆ ×= , (20) 

u
r

, (m·s-1) k , (m2·s-2) effµ , (Pa·s) Λ , (-) 



where *ψ  stands for the obtained numerical solution, then the matrix residual is 

∆bR −= . (21) 

It should be noted that R  is actually a scalar or tensor vector with the number of elements 
{ }ir  equal to the number of the finite volume cells. Thereby, to estimate the overall error of 

the whole domain, residuals normalization with the normalization factor N  is applied in 
OpenFOAM: 
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The normalization factor N  is calculated as 
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At the convergence of Eq. (17) the relationship of Eq. (21) can be reduced to the simple form 

∑=
i

ib2N . (27) 

Thereby according to Eq. (27), normalization factor strongly depends on the source terms. 
Unstructured grid being exploited for the complex geometries introduces a huge amount of 
the non-orthogonality, which should be treated during gradient calculation when the high 
order convectional schemes are used. The common approach is based on the non-orthogonal 
correction procedure, which actually results in the additional source terms in the right-hand 
side (RHS) of linear system (19). 

Normalization factor utilized in the OpenFOAM represents so called 1L  norm. Skewed cell 
produce an artificially high rate of the RHS source terms, hereby decreasing residuals level to 
the under-estimated one. Thus a linear solver detects that convergence criterion is already 
reached and the iteration process is stopped. 

Possible solutions are either to modify the OpenFOAM libraries to utilize proper 
normalization, which is not prone to similar error, or to set the residuals level in solution 
control dictionary to the artificially strict level of 10-14~10-12, and restrict maximum number 
of the iterations along with the high relative tolerance 10-3~10-2. The latest means that we 
improve the solution accuracy by 2-3 orders of the magnitude. 



The revised results using the adjusted convergence criterion for the turbulent flow simulation 
are presented in Fig. 3. A more smooth distribution of the calculated quantities is observed 
indicating a high turbulent mixing. All equations of the model are consequently solved and no 
“freezing quantity” occurs. It doesn’t show the highly resolved eddy structures any more, as 
what we have seen in Fig. 2, but the numerical solution is correct according to the RANS 
model hypothesis of the averaged instantaneous velocity oscillations. On this base the small 
vortices are not detected within the frames of RANS, however granting enough information of 
the transient turbulent flow for further solidification modeling. 

 
a)   b)   c)   d) 

Figure 3. Flow pattern in the CC mold for the case of the enhanced convergence settings: 
(a) velocity field; (b) turbulent kinetic energy; (c) effective viscosity; (d) flow type function. 

Additionally it is possible to correct some errors for the ε−k  transport, which are connected 
with the inaccuracy in the solution of the continuity equation (1). Conservative form of the 
convectional term in Eq. (5) is 

( ) ( )kuku
vv ⋅∇=⋅∇ ρρ . (28) 

Induced incompressibility correction can be expressed as 
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 is the calculated one and δ  is an error vector. The 
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r
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So if it would be possible to get the exact solution at each of iterations, a gradient form could 
be written for Eq. (28) omitting the constant density in the expression: 
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Next according to Eq. (29) the calculation error is estimated: 
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Applying Eq. (30) we get 
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Thereby performing a correction for the convectional term in the form 

( ) ( ) ukkuku
vvv ⋅∇−⋅∇≈⋅∇ *  (34) 

the incompressibility estimation error is reduced to k∇
r
δ . 

 
a)    b) 

Figure 4. Turbulent energy k  distribution calculated using 
advection term in (a) the divergent form and  

(b) with the incompressibility correction. 

Described correction approach was tested and approved for the transport of turbulent 
quantities on the unstructured grids. As an example, in Fig. 4(a) one can see the calculated 
distribution of the turbulent kinetic energy at the SEN port region. The highest values are 
detected at the sharp edge of the port where the most turbulence is generated. However the 
artificially low k  value is detected for the highly skewed mesh element (blue color in the 
marked area). After applying the convection term correction, error value is vanished and more 
smooth distribution of the k  field is observed (see Fig. 4(b)). 

4. MESH REFINEMENT FOR SOLIDIFICATION FRONT TRACKING 

Traditionally mesh refinement is performed by introducing boundary layers (BL) at the high 
gradient regions e.g. near walls and phase interfaces. Utilization of the BL is also a well 
known technique to treat the laminar sublayer of the turbulent flow. However this mesh is 
static and does not track the transient behavior of the considered phenomenon. 

During solidification simulation of the continuous casting it was observed that a solid shell 
thickness is under-estimated if compared to the reality. Extension of the boundary layer 
produces more accurate simulation results within the solidifying region, but is an inefficient 
approach, because it guides to the enormous number of cells, considerable part of which is in 
the totally solidified region, where the high mesh resolution is actually not necessary. 

To find a proper mesh refinement method it is necessary to study the correlation between the 
solid phase fraction and the temperature [1, 13]: 
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One can see that the relation of Eq. (35) is noticeably non-linear. For instance, it is desired to 
have at least 10 grid points within the mush zone. We can either intend to track the solid 
fraction (Fig. 5(a)) with the regular stepping between resolved values within the BL or rely 
upon the temperature distribution (Fig. 5(b)). Respectively the grid points in the appropriated 
boundary layers are mapped in Fig. 6. Generally it should be noted that the 100% solid 
represents the wall surface and adjacent regions if the shell thickness increases. 

   
a)      b) 

Figure 5. Scheil curve for the Tfs −  correlation:  

(a) regular sf  stepping and (b) regular T  stepping. 

 

   
a)      b) 

Figure 6. Grid points density according to (a) sf  stepping and (b) T  regular stepping. 

If the solid fraction is used as the refinement factor, the temperature is better resolved at the 
starting point (solidification front) of the two phase region (Fig. 6(a)). However there is lack 



of accuracy for its prediction near the walls where the most temperature gradients are 
observed due to the contact with the chill. If the meshing procedure is aimed to improve the 
temperature distribution, there is an issue with the proper calculation of the phase fraction 
because of the insufficient number of the grid points within the mush zone. They are mostly 
concentrated in the vicinity of the 100%-solid surface (Fig. 6(b)) where the solid shell is 
already formed and no medium motion occurs apart of the pulling process. 

Thereby it is necessary to have a compromise for the grid adjustment, taking into account the 
fact that the number of mesh cells after refinement is limited by the computer hardware 
resource. In the current work a static method was used for the grid refinement. First of all, a 
coarse mesh was used with the introduced BL merely at the chill walls using third party 
meshing tool (Fig. 7(a)). As the next step, several refinements were done by means of the 
refineMesh tool according to some semi-empirical criteria for the cells with the most 
difference in the solid phase and temperature distributions. Additionally a limiting of the 
refinement only in the lateral direction was applied. 

a)       b) 
Figure 7. Numerical grid for the solidification solver:  

(a) initial one created with the Gambit BL; 
(b) after the refinement with the OpenFOAM tool 

A mesh refinement procedure was repeated serially each time when the coarser grid solution 
has reached the quasi-steady state (e.g. a certain shell thickness was obtained). Corresponding 
results are shown in Fig. 7(b). 

5. BOUNDNESS AND ACCURACY OF THE HEAT TRANSFER CALCULATION 

During the numerical studies of the solidification processes with the designed solidification 
solver [17-18] it was detected that a temperature over-estimation occurred. It leads to the 
unwanted side effects, such as the remelting due to the increased ‘superheat’ being brought to 
the solidified region. In accordance with the performed discretization analysis, the energy 
equation Eq. (14) was proved to be a source of wrong temperatures. It was also revealed that 
the same behavior occurred even without taking into account the solidification (Fig. 8).  

Let’s consider transport equation for the temperature 
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=  represents effective thermal diffusivity. 

Next, Eq. (36) is split into convectional and diffusive parts: 
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Above Eq. (37)-(38) are solved together with the Navier-Stokes equations for the flow and 
turbulence. The same heat flux boundary condition as for the solidification modeling is used. 
After the turbulent flow and heat transfer are developed, the analysis of the temperature field 
is carried out. Observations indicated that the estimation of the temperature overshoots 

tundishmaxerror TTT −=∆  exceeded 560 K for the convection equation (37), whereas for the 

diffusive one according to Eq. (38) the violation level remained insignificant. Therefore, the 
discretization procedure of the convectional part of the energy equation is most critical and 
should be improved to ensure physically correct result. 

   
a)     b) 

Figure 8. Volume elements with (a) error values (marked with red) and  
(b) the scaled temperature overshoots. 

It is known [20] that all convectional schemes can be categorized in two groups: those, which 
guarantee and maintain the boundness of the numerical solution, and those, which provide 
higher precision of discretization. Schemes of the first category are mostly of the low 
accuracy and introduce considerable level of the numerical diffusion. Hereupon it becomes 
impossible to trace the strong gradients of the solution, which are artificially smoothed. 

Convectional schemes of the second category are prone to the spurious oscillations of the 
numerical solution and quite often produce unphysical results. On the one hand such behavior 
can be relatively easy detected for the scalar transport problems with the well know variation 
range. On the other hand, when minimum and maximum values are not fixed or some 
gradient boundary conditions are applied, a question regarding validation criterion arise. 

Due to lack of a simultaneously bounded and accurate scheme, a compromise should be 
found. Usually TVD and NVA approaches are used to combine stability, boundness and 
accuracy for the discretization procedure. 

To verify the numerical behavior of the convectional schemes implemented in the 
OpenFOAM CFD software a stationary transport equation was solved: 

( ) 0=⋅∇ u
vφ , (39) 



where φ  is a passive scalar. A simulation domain of the benchmark is a 2D square (Fig. 9). 
Left and bottom sides correspond to the inlet, right and top are the outlet boundaries. Step 
profile of the scalar φ  brought by the flow from the left is defined as 
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Right and the left boundaries are set to the zero gradient condition. 

 
Figure 9. Initial setup of the 2D benchmark for testing the convectional schemes. 

To simplify the interpretation of the test results velocity represents a unit vector with the fixed 
mesh-to-flow angle, o30=ϑ . Numerical grid is uniformly spaced and consists of 30×30 
control volumes. Comparison between the analytical and the numerical solutions of the 
transport equation Eq. (39) is made across the vertical line, which is 20 CV downstream from 
the left inlet boundary. The exact solution in this case is 
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As provided by the analytical solution, the transported step profile should remain sharp. 
Hereby, the behavior of the numerical schemes is evaluated according to following criteria: 
diffusivity of the scheme (how the sudden change of the solution is smeared due to the lack of 
discretization accuracy) and the ability of the scheme to keep the physical boundaries of the 
transported scalar. 

According to advanced application practice the upwind differencing (UD), central 
differencing (CD), linear-upwind differencing (LUD [21]), self-filtered central differencing 
(SFCD [22]) and the Gamma [20] schemes were tested and compared. Figs. 10-15, 
representing the test results, contain the color map (left) of the simulated scalar along with the 
comparison plot of the exact and modeled profiles at the position 20 CVs downstream from 
the left boundary (top-right) and the numerical error distribution pattern (bottom-right). 
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Figure 10. Simulation results of a passive scalar transport (UD scheme) 

The upwind differencing (UD) scheme provides the most bounded solution without any 
additional numerical tricks due to its physical nature, resulting in the strongly smoothed step 
profile though (Fig. 10). Thus UD scheme is too diffusive and, despite it conserves scalar 
being transported within desired range, it can not tackle the strong gradient (which occur 
rather often during solidification processes). UD can be widely used for the starting period of 
the simulation procedure to stabilize it. 

 
Figure 11. Simulation results of a passive scalar transport (CD scheme) 

Central differencing (CD) scheme is more accurate and follows the sudden change of the 
simulated value (Fig. 11). However it produces spurious oscillations of the numerical solution 
up- and downstream. Thus a positive scalar can reach negative values as well as overshoots of 
the solution are observed.  

Linear upwind differencing (LUD) scheme is designed to take advantages of both UD and 
CD. It combines the boundness of the former and brings the accuracy of the latter. However 
according to the test results it still produces small under- and overshoots of the solution 
(Fig. 12). 

To exclude the unboundedness of the numerical solution, a cell / face limiting of the gradient 
is applied either between the neighboring volumes or at the interface between them. Such 
procedure is aimed to avoid unphysical peaks of the calculated gradients between the cells. 
After cell / face correction is applied one can observe that LUD scheme tracks both the 
sharpness of the step profile and the boundness of the simulated value (Fig. 13). 



  
Figure 12. Simulation results of a passive scalar transport (LUD scheme) 

 
 

 
Figure 13. Simulation results of a passive scalar transport (LUD scheme with cell limiting) 

 
 

 
Figure 14. Simulation results of a passive scalar transport (SFCD scheme with cell limiting) 

The similar tests were carried out for the SFCD and the Gamma schemes. One can see the 
results (Fig. 14 and Fig. 15) with cell limiting been applied. As opposed to LUD scheme both 
of them lead to some overshoots ~1% of the maximum value at the step profile and seem to 
be a little bit more diffusive than LUD one. 



 
Figure 15. Simulation results of a passive scalar transport  

(Gamma scheme with cell limiting) 

Based on the above analyses linear-upwind differencing scheme was proposed for the 
discretization of the convectional term, together with the cell limiting of the gradients. Both 
supplements of the initial algorithm were proved to be effective to maintain the boundness of 
the solution. 

6. NON-LINEARITY OF THE MODEL 

It was already mentioned that the coupling between the turbulent flow and solidification is 
strongly non-linear. A latent heat recovery method led to the segregated approach for the 
solidification solver (Fig. 16). Thereby all the equations are solved sequentially utilizing an 
under-relaxation procedure for updating the porous resistance and heat source terms. Under-
relaxation method is known as a reliable tool for the non-linear problems; however it is 
characterized by the significant number of the internal iteration loops of the solution 
algorithm, especially for the transient tasks. 

 
Figure 16. Flow chart of the solution algorithm. 

One can evidently observe how the number of the iterations drastically increases with the 
relaxation parameter decrease (Fig. 17). Some solidification simulations require the under-



relaxation factor ω  as small as 0.05. It implies that each time step of the calculation might 
need as much as 100-200 steps to get the solution converged. A typical solidification 
simulation would run for weeks on the relatively powerful hardware. 

 
Figure 17. Convergence behavior of the under-relaxation procedure 

The ongoing work is devoted to make use of the full capacity of the OpenFOAM extended 
version [23] to deal with the block-matrix methodology for the strongly coupled PDE 
systems. It permits to avoid the additional iteration process for coupling and improve the 
convergence rate. 

  
 a)      b) 

Figure 18. Drag force coefficient as function of liquid volume fraction: 
a) whole two-phase region; b) near the end of solidification. 

Another issue of non-linearity is related to the permeability law of porous media being used in 
the model. Previous studies [1] have shown that due to the high porous resistance of the two 
phase region a melt flow can only penetrate into the mush as deep as %30~20=sf . The 

porous resistance, here also named as drag force coefficient, can be evaluated by inverting 
Eq. (4): 



2
1

43

2

106

11

λδ ⋅⋅
⋅

+
= −

l

s

f

f

K
, (42) 

where δ , according to the FLUENT User Guide [19], is a small number in the magnitude 
of 34 10~10 −− . A question arises if the δ  value influences the permeability dramatically. This 
comes really into effect, e.g. for some steel grades where minimal liquid fraction, remaining 
in the mush, is 3105~ −× . The term 63 10~ −

lf  is actually 2 orders of the magnitude smaller 

than δ  in the pre-factor 
δ+3
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Performed studies have shown (Fig. 18) that the difference of drag coefficients due to 
different δ , as calculated by Eq. (42), takes only effect for the liquid fraction lower than 
20 %. At this stage of solidification the liquid melt is almost solidified and there is no 
significant convection. Therefore, the assumed numerical form of the permeability law does 
not affect the final simulation result of solidification. On the contrary it helps to enhance the 
stability and the convergence rate of the numerical solution by reducing the difference in the 
matrix diagonal coefficient and bounding the porous resistance to a reasonable range. 

7. SUMMARY DISCUSSIONS 

In this work a numerical model considering turbulent flow and solidification is implemented 
in the OpenFOAM® CFD software. The treatment of the solidification latent heat considering 
the relative motion of the dendritic structures of the continuous casting with the complex 
mold geometries (curvature of the mold) is improved. Based on the Eulerian formulation of 
the energy equation a proper form of the latent heat advection term is considered. 

In the framework of the RANS approach the turbulence transport quantities, k  and ε , are 
analyzed. The convergence criterion for both k  and ε  transport equations was adjusted based 
on the analyses of the residual normalization. The incompressibility corrections for the 
convectional terms in the k  and ε  equations are investigated and approved. 

A static mesh refinement method is utilized to improve the prediction of the solid shell 
formation. The on-going developments are devoted to the dynamic mesh adjustment, i.e. 
automatic refinement and coarsening during the calculation. 

A number of the convectional schemes, which have been implemented in the OpenFOAM® 
CFD software, are checked with regard to the accuracy and boundness of the numerical 
solution. It is found that the face or cell limiting of the gradient calculation is required for the 
convectional term in the energy equation to avoid the spurious oscillations of the numerical 
solution. Hereby the evaluation of the temperature field using unstructured numerical grid is 
made, and the heat transfer part of the solidification model is improved. 

The under-relaxation procedure in the frame of the segregated approach is considered to 
enhance the coupling efficiency of the fluid flow with the evolution of the two-phase region. 
On the one hand it is claimed to be rather stable; on the other hand the under-relaxation 
procedure is proved to be inefficient and computational-time consuming one. The fully 
coupled solution using the new block-matrix library and solver of the OpenFOAM extended 
version is supposed to be a new alternative for the strongly coupled problems such as the 
solidification. It is significant for the non-linear latent heat adjustment formulation and also 
for the complex permeability law of the two phase region as well. 
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NOMENCLATURE 

pc  J·kg-1·K-1 specific heat  

ε1C , ε2C , µC  [-] constant of the standard ε−k  model 

l
f , sf  [-] volume fraction of liquid and solid phase 

G  kg· m-1·s-3 shear production of turbulence kinetic energy 
h  J·kg-1 enthalpy 

refh  J·kg-1 reference enthalpy at temperature refT  

k  m2·s-2 turbulence kinetic energy per unit of mass 
K  m2 permeability 
L  J·kg-1 latent heat 
p  N· m-2 pressure 

kt,Pr  [-] Prandtl number for turbulence kinetic energy k  

εt,Pr  [-] Prandtl number for turbulence dissipation rate ε  

kS  kg· m-1·s-3 source term for turbulence kinetic energy  

εS  kg· m-1·s-4 source term for turbulence dissipation rate  

DS
v

 kg· m-2·s-2 source term for momentum equation 

t  s time 
T  K temperature 

refT  K reference temperature for refh  

fT  K melt point of pure solvent 

eutecticT  K temperature of eutectic reaction 

liquidusT  K liquidus temperature of alloy 

u
v

 m·s-1 velocity of the mixture 

l

v
u  m·s-1 liquid velocity 

su
v

 m·s-1 solid velocity 

   
ε  m2·s-3 turbulence dissipation rate per unit of mass 
α  W m-1·K-1 thermal conductivity 

effα  W m-1·K-1 effective thermal conductivity due to turbulence 

tα  W m-1·K-1 turbulence thermal conductivity  

1λ  m primary dendrite arm spacing 
ρ  kg· m-3 density 

effµ  kg· m-1·s-1 dynamic effective viscosity due to turbulence 

l
µ  kg· m-1·s-1 dynamic liquid viscosity 

tµ  kg· m-1·s-1 dynamic turbulence viscosity  
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