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Abstract. A key issue for modelling the thin slab casting (TSC) is to consider the evolution of the 

solid shell, which strongly interacts with the turbulent flow and in the meantime is subject to 

continuous deformation due to the funnel shape (curvature) of the mould. Here an enthalpy-based 

mixture solidification model with consideration of turbulent flow [Prescott and Incropera, ASME 

HTD, vol. 280, 1994, pp. 59] is employed, and further enhanced to include the deforming solid 

shell. The solid velocity in the fully-solidified strand shell and partially-solidified mushy zone is 

estimated by solving the Laplace’s equation. Primary goals of this work are to examine the 

sensitivity of the modelling result to different model implementation schemes, and to explore the 

importance of the deforming and moving solid shell in the solidification. Therefore, a 2D 

benchmark, to mimic the solidification and deformation behaviour of the thin slab casting, is 

firstly simulated and evaluated. An example of 3D TSC is also presented. Due to the limitation of 

the current computation resources additional numerical techniques like parallel computing and 

mesh adaptation are necessarily applied to ensure the calculation accuracy for the full-3D TSC. 

 

1. Introduction 

The thin slab casting (TSC), for its advantages of integration of the casting-rolling production chain, 

energy saving, high productivity and near net shape, is likely to replace the conventional slab casting 

for producing flat/strip products [1-2]. However, the frequently reported problems like the sensibility 

to breakout and edge/surface cracks have challenged the metallurgists to consider modeling tools to 

optimize and control the TSC parameters [3-5]. The key issue for modelling TSC is to consider the 

evolution of the solid shell, which interacts strongly with the turbulent flow and in the meantime is 

subject to continuous deformation due to the funnel shape (curvature) of the mould. 

An enthalpy-based mixture solidification model with consideration of turbulent flow [6-9] was 

introduced by the current authors to model conventional continuous casting [10-11], where the motion 

of the solid shell was assumed to be everywhere parallel and constant. According to Voller et al., the 

treatment of the motion of the solid phase has a dramatic influence on the convection of the latent 

heat, hence on the shape of the evolving mushy zone [12-15]. Obviously, the assumption of parallel-

constant solid velocity does not apply to TSC, where the strand shell is subject to continuous 

deformation due to the funnel shape (curvature) of the mould. Therefore, goals of this work are (1) to 

extend the previous model by considering the deforming solid shell; (2) to examine the sensitivity of 
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the modelling result to different model implementation schemes; (3) and to explore the importance of 

the deforming and moving solid shell in the solidification. Modelling results on a 2D benchmark and a 

full-3D TSC are presented.  

 

2. Model description 

Solidification and turbulence flow 

An enthalpy-based mixture solidification model [12-14] is applied. This mixture combines liquid l -

phase and solid s-phase, which are quantified by their volume fractions, 
l
f  and

s
f . The morphology 

of the solid phase is usually dendritic, but here we consider the dendritic solid phase as a part of the 

mixture continuum. The mixture continuum changes continuously from a pure liquid region, through 

the mushy zone (two phase region), to the complete solid region. The evolution of the solid phase is 

determined by the temperature according to a Tf −
s

 relation (e.g. Gulliver-Scheil), 
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Only one set of Navier-Stokes equation, which applies only to the domain of the bulk melt and mushy 

zone, is solved in the Eulerian frame of reference.   
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Here 
s

u
v
, the solid velocity, is estimated by solving Laplace’s equations (see below). The momentum 

sink due to the drag of the solid dendrites in the mushy zone is modeled by the Blake-Kozeny law:  
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S
rrv
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 (5) 

The permeability, K, is modeled as function of the primary dendrite arm spacing
1
λ  [16]: 
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The energy equation applies to the entire domain, 
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Here h  is the sensible enthalpy of the solid =
s

h +
ref

h  dTc
T

T∫ ref
p

. At a given temperature the liquid 

phase is assumed to have an enthalpy of Lhh +=
sl

. Release of latent heat by solidification, L, is 

treated in the source term of the energy equation, 

tfLS ∂∂=
se

ρ ( )ssufL
v

⋅∇+ ρ .  (8) 
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A low Reynolds number k -ε  model was introduced by Prescott and Incropera [6-9] to handle the 

turbulence during solidification. In current studies a realizable k -ε  model was employed providing 

improved performance for flows involving boundary layers under strong pressure gradients and strong 

streamline curvature. The governing equations for the turbulence are 
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The turbulent Prandtl numbers for k : 
kt,

Pr =1.0, and for ε : εt,Pr =1.2; G is the shear production of 

turbulence kinetic energy; ijijSSS 2= , ( )
jiijij

xuxuS ∂∂+∂∂= 5.0 ; εν /kS ⋅= . A simple 

approach is used to modify the turbulence kinetic energy in the mushy zone. It is assumed that within 

a coherent mushy zone turbulence is dampened by shear which is linearly correlated with the 

reduction of the mush permeability. The influence of turbulence on the momentum and energy 

transports are considered by the effective viscosity, 
teff
µµµ +=

l
, and the effective thermal 

conductivity, teff λλλ +=
l

, where ερµ 2

µt
kC= , 

ht,p,tt
Pr

ll
cf µλ = , 

µ
C  is a function of velocity 

gradient and ensures positivity of normal stresses; 
ht,

Pr  is the turbulent Prandtl number for energy 

equation (0.85). 

Above governing equations of the mixture solidification model were implemented in an 
OpenFOAM CFD software package [17-18]. 

Solid velocity 

A linear elasticity model [19] is further simplified to estimate the solid velocity. If we assume that in 

the solid domain the elastostatics condition applies and the body force is ignorable, the governing 

equation obtained is called Navier-Cauchy equation or elastostatic equation: 

( ) ( ) 0=∇⋅∇+⋅∇∇+ δµδµλ
vv

, (11) 

where δ
v
 is the displacement vector. So called Lamé parameters µλ,  are  
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where E  represents Young's modulus and ν  is Poisson’s ratio. If the solid shell is incompressible and 

its deformation is at small strains ( 5.0=ν ), then a volume conservation condition is fulfilled: 

   0=⋅∇ δ
r

,            (13)  

and the first term of Eq. (11) is forced to zero as well:  

0=∇⋅∇ δ
r

. (14) 

Transforming Eq.(13) and (14) from Lagragian frame into Eulerian frame by considering tu ∂∂= δ
vr

s
, 

we obtain volume-conserved Laplace’s equations: 
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In 2D case, these volume-conserved Laplace’s equations can be solved with a ψω −  method 

(Method I) [20]. A stream function ψ  and a curl of the solid velocity 
s

u
r

×∇=ω  are defined by:  
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









=
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

.0

,

2

2

2

2

2

2

2

2

yx

yx

ωω

ω
ψψ

 (17) 

This ψω −  method provides accurate solution, but it applies only to the 2D case. An alternative 

and approximation method (Method II), applicable to both 2D and 3D, is to solve the one-phase 

Navier-Stokes equation with an ‘infinite solid viscosity’. In the current work the approximation 

method is to be justified by comparison with the ψω −  method on the 2D base.   

3. Benchmark (2D) configuration  

A 2D benchmark is defined, as shown in Figure 1. The melt with nominal composition of Fe-

0.34wt.%C fills continuously through the inlet into the domain with constant temperature (1850 K). 

The casting section is gradually reduced to mimic the solidification and shell deformation in TSC. 

Other material properties being used refer to [11].  Solid velocity is calculated with the configuration 

of Figure 1(a). The whole domain is filled with the solid which is extruded downwards with the 

constant speed 
pull

u
r

=0.07 m/s, being set at the outlet. Free slip condition is applied at the walls and 

non-rotational condition ( 0
s
=×∇ u

r
) is used at the inlet. Right boundary represents symmetry plane. 

Flow-solidification simulation is configured in Figure 1(b). A mass balance between the inlet and the 

outlet is fulfilled: 
outpullsinin

AuAu
rr

l
ρρ = , where Ain and Aout are the inlet and outlet surface areas. At the 

walls free-slip condition is assumed.  

 
(a)                                (b) 

 

 

 

 

 

 

 

Figure 1. Configuration of a 2D benchmark 

(a) for solid velocity calculation and (b) for 

the solidification–flow calculation. The 

geometry in vertical direction is scaled by 1/8 

(the same hereafter). 

4. Results and discussions 

In the presented studies solid velocities calculation is decoupled from the simulation of the melt flow. 

They are initially estimated by solving (15) with an assumption that the whole domain is filled with 

the solid and are used later on for the solidification modeling in the mush region only. Thereby liquid 

core in the center can accelerate or retard for balancing the total mass flow rate. The calculated solid 

velocity, 
s

u
r
, is shown in Figure 2 (a)-(b). Solid phase enters the domain in parallel to the straight 

wall. In the section-reduction region the solid is extruded and its velocity is gradually 

increased. The surface profile is forced to move along the curved wall. Comparison of the 

calculation results by two different methods (I and II) is made in Figure 2(b)-(d). The 
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maximum error caused by method II, solving a simplified Navier-Stokes equation with an ‘infinite 

solid viscosity’, is 0.8%, falling in the engineering tolerance. This solid velocity will only be used by 

the flow-solidification model, Eq.(5) and (8), in the region where solid phase exists.  

)/sm( 2ψ  )m/s(su
r

 (%)III,

s
u
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 a) b) c) d) 

 

Figure 2. Calculated solid velocity: (a) stream function ψ , (b) 
s

u
r

 obtained with ψω −  

Method I, (c)
s

u
r

obtained with ‘infinite solid viscosity’ Method II and (d) velocity difference 

between the two methods ( 100/ I

s

II

s

I

s

III,

s ⋅−=∆ uuuu
rrrr

). 

Table 1. Parameter study of the flow-solidification model 

 
Flow regime Treatment of latent heat (Eq.(8)) integral

s
f  (vol.%)

*
 

Case I laminar 
e

S  9.38 

Case II laminar ignoring ( )
ss

ufL
v

⋅∇ρ  in 
e

S  15.34 

Case III turbulent 
e

S  8.81 

Case IV turbulent ignoring ( )
ss

ufL
v

⋅∇ρ  in 
e

S  14.04 

* integral

s
f : total solid phase (vol.%) in the whole calculation domain at the steady state. 

 

 
l
f  

s
f∆ = I Case

s
f - II  Case

s
f  

     
 a) b) c) 

Figure 3. Predicted steady state solidification with a model considering only laminar flow: 

l
f  distribution for (a) Case I and (b) Case II; (c) difference in 

s
f  between Case I and Case II. 

Path I 

Path II 

Path I 

Path II 
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In order to investigate different model assumptions, e.g. the influence of solid velocity and 

turbulence, on the solid shell formation by solidification, 4 simulation cases are defined (Table 1). For 

the boundary conditions refer to Figure 1(b). The predicted solid shell formation for the Case I and II 

(only laminar flow is considered) at the steady state is shown in Figure 3. Obviously the treatment of 

the advection of latent in the energy equation is extremely important. Ignorance of the advection term, 

( )
ss

ufL
v

⋅∇ρ , in Case II will to a great extent overestimate the solid shell thickness. More precise 

analyses of the solid phase distributions along Path I and II, marked in Figure 3(a) and (b), are made in 

Figure 4.  

   
 a) b) 

Figure 4. Solid volume fraction distributions of different simulation cases along 

 (a) Path I  and (b) Path II are compared.  

Similar calculations were carried out for the turbulent flow regime, but are not displayed here 

because the global phase distribution shows similar pattern to the Case I and II. Instead the influence 

of the turbulence on the solid shell formation is analysed (Figure 5). Comparison between Cases III 

and I shows that the presence of turbulence hinders the solid shell formation. Ignorance of the 

advection term, ( )
ss

ufL
v

⋅∇ρ , will also overestimate the solid shell thickness. More precise analyses of 

the solid phase distributions alone two Path I and II, marked in Figure 3(a) and (b), for the simulation 

Cases III and IV are also made in Figure 4.  

 
s
f∆ = III Case

s
f - I  Case

s
f  sf∆ = III Case

s
f - IV  Case

s
f  

   
 a) b) 

Figure 5. Influence of turbulence on the solid shell formation, i.e. the difference in 
s
f  

distribution (a) between Cases III and I, (b) between Cases III and IV. 
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Additionally a mesh and time step dependency of the numerical solution was examined. A low 

latent heat relaxation factor (0.05) [11] along with a relatively large number of iterations (50 per time-

step) allowed using a relatively large time steps without problem of divergence. It was shown that the 

increase in time step did not influence the final steady state solution. To improve the accuracy a 

necessity to use separate refinement regions for the temperature and solid fraction fields was approved 

previously by authors [21]. Thereby based on the error analysis of the energy equation and the 

resolution criterion of the Gulliver-Scheil correlation (Eq.(1)), consecutive mesh refinements were 

made (Figure 6). Eventually mesh independent results were obtained. 

 

Figure 6. Mesh refinement to track the temperature boundary layer and solidification front 

 
    c) 

Figure 7. Quasi steady state simulation result of an engineering TSC. a) 3D distribution of the 

velocity vector field and evolution of the solid shell (dark region in the 5 cross sections); b) 

zoomed velocity field in the central plane near the narrow face; c) detailed velocity 

(uy component) profile and solid volume fraction along two paths cross the mushy zone.  

5. Example of thin slab casting 

Based on the aforementioned model a simulation of the real engineering TSC (width 1726 mm and 

thickness 72 mm) was performed, and the calculation result is shown in Figure 7. The calculation 

domain includes the submerge entry nozzle and entire mold region and part of water cooled strand (till 

2000 mm from meniscus). To ensure the calculation accuracy numerical techniques like parallel 

u
r
 (m/s) 

a) b) 

temperature 

boundary layer 

mushy zone 

boundary layer 
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computing and mesh adaptation are necessarily applied. More than 1 million computational cells are 

used to resolve the interdendritic flow in the mushy zone (Figure 7(c)). In [17,18] Laplace’s equation 

was solved for solid velocities with a constant vertical component assumption restricting longitudinal 

deformations. The new approach doesn’t have such a limitation and helps to mimic the mush better. 

Detailed analysis of the 3D simulation result and evaluation will be presented in later publication.  

6. Summary 

Combination of flow-solidification calculation with the deforming solid shell, oriented to the 

application in thin slab castings, is suggested. The numerical model is implemented in an 

OpenFOAM CFD open source software package. As no additional structure mechanics software is 

used, the motion of the solid shell is estimated on the base of a volume-conserved Laplace’s equations. 

Validity of the proposed approach is verified in a 2D benchmark. Preliminary modelling result of a 3D 

thin slab casting is also presented to demonstrate the functionality of the numerical model. Further 

verifications, especially against experiments, are desired.  

Acknowledgment  

The financial support by RHI AG, the Austrian Federal Ministry of Economy, Family and Youth and 

the National Foundation for Research, Technology and Development is gratefully acknowledged. The 

authors acknowledge the fruitful discussions with Prof. Brian G. Thomas, University of Illinois at 

Urbana-Champaign, USA.  

References 

[1]  Yin RY 2009 J. Iron & Steel Res. 16 (Supplement 1) 1.  

[2] Birat JP and Bobadilla M 2006 Proc. McWASP XI (Eds: Gandin CA and Bellet M, TMS 

Publications) 33.  

[3]  Tang Y, Krobath M, Nitzl G, Eglsaeer C and Morales R 2009 J. Iron & Steel Res. 16 (Supplement 

1) 173. 

[4]  Thomas BG 2001 Brimacombe Lecture, 59
th
 Electric Furnace Conf. (Iron & Steel Soc.) 3. 

[5]  Tian X, Zou F, Li B and  He J 2010 Metall. Mater. Trans. 41B 112. 

[6]  Prescott PJ and Incropera FP 1994 Transp. Phen. in Mater. Proc. & Manuf.- ASME HTD 280 59. 

[7]  Prescott PJ and Incropera FP 1994 J. Heat Transfer 116 735. 

[8]  Prescott PJ, Incropera FP and Gaskell DR 1994 Trans. ASME 116 742. 

[9]  Prescott PJ and Incropera FP 1995 Trans. ASME 117 716. 

[10] Pfeiler C, Thomas BG, Wu M, Ludwig A and Kharicha A 2008 Steel Res. Int. 79 599. 

[11] Wu M, Vakhrushev A, Nummer G, Pfeiler C, Kharicha A and Ludwig A 2010 Open Transport 

Phenomena J. – Bentham Open 2 16. 

[12] Voller VR and Prakash C 1987 Int. J. Heat Mass Transfer 30 1709. 

[13] Voller VR, Brent AD and Prakash C 1989 Int. J. Heat Mass Transfer 32 1719. 

[14] Voller VR, Brent AD and Prakash C 1990 Appl. Math. Modeling 14 320. 

[15] Chakraborty PR and Dutta P 2011 Metall. Mater. Trans. 42B in press (DOI: 10.1007/s11663-011-

9585-3). 

[16] Gu JP and Beckermann C 1999 Metall. Mater. Trans. 33A 1357. 

[17] Vakhrushev A, Ludwig A, Wu M, Tang Y, Nitzl G and Hackl G 2010 Proc. OSCIC’10. (Munich, 

Nov. 4-5). 

[18] Vakhrushev A, Ludwig A, Wu M, Tang Y, Nitzl G and Hackl G 2011 Proc. ECCC (Düsseldorf, 

June 27 – July 01).  

[19] Slaughter WS 2002 The Linearized Theory of Elasticity (Boston: Birkhäuser). 

[20] Roache PJ 1998  Fundamentals of Computational Fluid Dynamics (New Mexico: Hermosa 

Publishers) 

[21] Vakhrushev A, Ludwig A, Wu M, Tang Y, Nitzl G and Hackl G 2011 Proc. OSCIC’11. (Paris 

Chantilly, Nov. 3-4).   

MCWASP XIII IOP Publishing
IOP Conf. Series: Materials Science and Engineering 33 (2012) 012014 doi:10.1088/1757-899X/33/1/012014

8




