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Abstract. In the field of modern steelmaking, continuous casting has become the major manu-
facturing process to handle a wide range of steel grades. An important criterion characterizing 
the quality of semi-finished cast products is the macrosegregation forming at the centre of 
these products during solidification. The deformation induced interdendritic melt flow has been 
identified as the key mechanism for the formation of centreline segregation. Bulging of the 
solidified strand shell causes deformation of the solidifying dendrites at the casting’s centre. 
Hence, a fundamental knowledge about the solid phase motion during casting processes is 
crucial to examine segregation phenomena in detail. To investigate dendritic deformation 
particularly at the strand centre, a thermo-mechanical Finite Element (FE) simulation model is 
built in the commercial software package ABAQUS. The complex dendritic shape is approxi-
mated with a conical model geometry. Varying this geometry allows considering the influence 
of different centreline solid fractions on the dendrite deformation. A sinusoidal load profile is 
used to describe bulging of the solid which deforms the dendrites. Based on the strain rates 
obtained in the FE simulations the dendrite deformation velocity perpendicular to the casting 
direction is calculated. The velocity presented for different conditions is used as input para-
meter for computational fluid dynamics (CFD) simulations to investigate macrosegregation 
formation inside of a continuous casting strand using the commercial software package 
FLUENT. 

1.  Introduction 

Nowadays, continuous strand casting is the main production process to manufacture a wide range of 
semi-finished steel products. To remain competitive, steelmaking companies must provide their 
continuous cast products (slabs, billets, blooms) at a desired quality on time, always keeping an eye on 
the actual production costs. This has become a critical factor of economic success during the past 
years and it will play an increasingly important role in the future. Hence, a detailed knowledge of the 
casting process is essential to guarantee stable operating conditions and to gain reproducible product 
specifications [1]. 
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In particular the formation of macrosegregation [2-3] inside the cast products should be prevented 
as far as possible, since macrosegregation causes problems in further processing steps. Technical 
measures like mechanical softreduction (MSR) can reduce but not completely prevent this undesirable 
defect during casting [4-7]. Since solidification advances from the surface towards the centre, the 
segregated steel melt (enriched with alloying elements such as carbon, silicon, manganese, etc.) 
accumulates and finally solidifies at the strand centre. The accumulation is enhanced, if the shrinkage 
induced flow of unsegregated melt along the casting direction and therefore its mixing with the highly 
enriched melt is inhibited. 

In slab casting, strand shell deformation (e.g. caused by bulging between adjacent guiding rolls of 
the casting machine) was identified as key mechanism to form positive centreline macrosegregation 
[8-11]. Strand surface bulging causes a periodic movement of the dendritic mushy zone inside the 
strand. The motion of the dendrites perpendicular to the casting direction is directly related to the 
deformation of the solid strand shell. However, if the dendrite trunks meet at the centre of the cast 
strand at the final stage of solidification, they will deform under compression. 

Segregation formation is strongly influenced by relative motion between the growing dendrites and 
the interdendritic melt [12-14]. Hence, describing the deformation velocity of the dendrites at the 
strand centreline is essential to simulate macrosegregation formation. Miyazawa et al. proposed that 
the solid velocity component perpendicular to the casting direction decreases linearly towards the 
centre [8]. However, Mayer et al. and Domitner et al. used an exponentially decreasing velocity 
approach to consider that most deformation might occur at the dendritic tip region [11, 15]. To obtain 
deeper understanding about the actual deformation velocities, a thermo-mechanical Finite Element 
simulation model was implemented in the commercial software package ABAQUS. 

2.  Thermo-mechanical simulation model 

2.1.  Model geometry 
Solidification inside of steel continuous casting strands leads to different complex-shaped dendritic 
morphologies. Generally, four characteristic morphology types can be distinguished: strictly oriented, 
mostly oriented, equiaxed and globulitic [9]. While globulitic and equiaxed dendritic solidification 
occurs mainly at the strand surface, oriented columnar solidification can be observed in regions 
between the surface and the strand centreline. Occasionally, down-sinking equiaxed crystals can be 
observed in the central region. 

Since the current simulations are focused on investigating the deformation behaviour of columnar 
dendrites perpendicular to the casting direction, equiaxed crystals are not considered in the model. 
Besides, the complex columnar dendritic shape is approximated with a conical axisymmetric model 
geometry, as shown in figure 1. This simplified geometry represents a primary dendrite trunk growing 
perpendicular to the casting direction x  and therefore parallel to the deformation direction y . The 
influence of secondary dendrite arms on the deformation behaviour is neglected. The model geometry 
has an entire length of l  = 30 mm and an overall diameter of d  = 1.2 mm. While d  is based on a 
typical primary dendrite arm spacing observed at the centre region of a continuous casting strand [16-
17], l  is related to the local mushy zone width being estimated by numerical simulation of a 25.0 m 
long continuous casting strand [15]. 

The volume fraction of solid varies from the tip to the root of the primary dendrite. As shown in 
figure 1, the so-called “zero-strength” solid fraction, zero

Sf , corresponds to the upper boundary of the 
model geometry, whereas the centreline solid fraction, cent

Sf , corresponds to the bottom boundary 
representing the dendrite tip. The tip is assumed to be located at the centreline of the casting strand. In 
the performed simulations, dendritic deformation occurs only if Sf < zero

Sf , while the dendrite trunks 
are assumed to behave rigid if Sf ≥ zero

Sf . The centreline solid fraction, cent
Sf , is calculated with 
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In equation (1), zeror stands for the radius of the modeled dendrite at zero
Sf . It is defined as 

502

ld
r zero == . (2)

centr  represents the dendrite’s tip radius at the centre of the casting strand. In the performed 
simulations, five model geometries with centr = 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm and 0.5 mm are 
compared to investigate the influence of different cent

Sf  on the deformation behaviour. These 
geometries are depicted in figure 2. The height of the conical region, h , depends on centr : 

( )centzero rrh −= 50  (3)

 

           

Figure 1. 2D axisymmetric model geometry 
used in the ABAQUS simulations. For visuali-
zation, a scaling of x : y  = 10:1 is applied. The 
letters A, B, C and D indicate the position of 
different boundary conditions. 

Figure 2. Different model geometries used in 
simulation cases I-V (actual geometry without 
scaling). For comparison, a dendritic contour
including secondary arms is shown schemati-
cally at case III. 

2.2.  Boundary conditions 
In figure 1, four boundaries (“A”, “B”, “C” and “D”) are marked. At the upper boundary “A” a 
sinusoidal displacement is applied to deform the dendrite in y -direction. This load represents a single 
bulging cycle between two adjacent guiding rolls at a continuous casting plant. Figure 3 shows the 
time-dependent load profiles, displacement and corresponding solid velocity, zero

ySv , . It is assumed that 
the maximum bulging amplitude decreases linearly from 0.8 mm at the exit of the continuous casting 
mould (strand coordinate X = 0.0 m, corresponding casting time T = 0.0 s) to 0.0 mm at the zone of 
strand end solidification (strand coordinate X = 22.5 m, corresponding casting time T = 1800.0 s). 
Hence, the bulging profile shown in figure 3 is obtained for X = 16.5 m where solidification and 
therefore the growing dendrites reach the strand centreline. Details about the bulging profile definition 
are given in [15]. 
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Furthermore, no horizontal deformation in x -direction is allowed at the right boundary “B”, 
whereas vertical movement in y -direction is hindered at the bottom boundary “C”. To simulate a 2D 
axisymmetric problem, boundary “D” is treated as rotational symmetry axis. 
 

  

Figure 3. Load profiles used in all of the five 
simulation cases to deform the dendrites. 

Figure 4. Solid fraction dependent temperature 
profiles for simulation cases I-V. 

2.3.  Numerical model 

2.3.1.  Thermal conditions 

Since the mechanical properties are temperature dependent, the temperature varying only in y -
direction within the dendrite is imposed in the ABAQUS simulations. Two temperature regimes are 
distinguished in the model. For Sf < 0.5 the temperature is calculated according to Scheil for a binary 
Fe-C-alloy, as given in equation (4). For Sf > 0.5 a linearly decreasing temperature is imposed using 
equation (5), where G  is the uniform temperature gradient at the dendrite axis. Equations (4) and (5) 
approximate the temperature profiles which were obtained by modeling solidification inside a 25.0 m 
long continuous casting strand [15]. The data required to calculate the axial temperature profiles are 
given in table 1; the resulting temperature profiles used for simulation cases I-V are shown in figure 4. 

( ) ( ) 1C
0, 15.0 −−+=< k

SLmS fmCTfT  (4)

              ( ) ( ) ( )( )5.05.05.0 =−−==> SSS fyyGfTfT  (5)

 
Table 1. Data to calculate the temperature profiles 

Melting temperature mT  1790 K 

Initial carbon concentration C
0,LC  0.182 wt.% 

Liquidus slope m  -116.7 K/wt.% 

Distribution coefficient k  0.36 

Temperature gradient G  2500 K/m 
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2.3.2.  Mechanical properties 

Two contributions are considered in the mechanical model for calculating the strain rate tensor ε& , 
namely the elastic strain rate elε&  and the viscoplastic strain rate vpε& : 

vpel εεε &&& +=  (6)

According to Hooke’s law, elε&  depends on the stress tensor σ  and on the elasticity tensor elD , which 
is defined by the Young’s modulus )(TE  and the Poisson’s ratio µ :  

σDε &&
1−= elel  (7)

Considering only creep deformation at high temperatures, vpε&  is expressed as 

sε
eq

eq
vp

vp σ

ε

2

3 &
& = , (8)

where s  stands for the deviatoric tensor and eqσ  is the Von Mises equivalent stress. eq
vpε&  represents 

the equivalent viscoplastic strain rate, which is defined as: 

( )( )neqT

Q

eq
vp aA σε σsinhe R

−
=&  (9)

In equation (9), R  is the universal gas constant and Q  is the activation energy. Further details about 
defining the parameters Q , A , )(Taσ , )(Tn , )(TE  and µ  can be found in [10]. 

3.  Results and discussion 

3.1.  Thermo-mechanical simulations 
The local deformation velocity in y -direction within a given mesh element i , )(, iv yS , is calculated 
with equation (10). Therein, )(iyε&  represents the y -component of the strain rate tensor obtained by 
the ABAQUS simulations. )(iy∆  stands for the height of the element located at the dendrite axis ( x = 
0 mm). 

)()()(, iyiiv yyS ∆= ε&  (10)

Furthermore, equation (11) is used to determine )(, nv yS , the total deformation velocity of the mesh 
element n . Starting at element i = 1 located at the dendrite tip, the velocities )(, iv yS  are summed up 
for i = 1… n . 

∑
=

=
n

i

ySyS ivnv
1

,, )()(  (11)

The total number of mesh elements along the dendrite axis, N , is constant for each of the five 
simulation cases ( N = 60). According to the applied boundary conditions, )0(, ySv = 0  at y = 0 mm 
and zero

ySyS vNv ,, )( =  at y = 30 mm. 
As an example, figure 5 shows the velocity profiles obtained for simulation case III at different 

times using equation (11). These results are focused on the first half of the bulging cycle when the 
casting strand is compressed in front of a guiding roll. It is assumed that only this compression causes 
the deformation of the dendrites at the strand centre. Due to the negligible elastic contribution at high 
temperature no deformation (expansion) occurs when the strand widens behind the roll. Since dendrite 
deformation acts against the positive y -direction, the obtained values of ySv ,  have a negative sign. 

The bulging cycle retained for the simulation starts at the casting time T = 1362.5 s, which 
corresponds to the bulging cycle time t = 0.00 s. At this moment zero

ySv , = 0 and therefore ySv , = 0 too. 
Hence, the velocity profile is a straight horizontal line for t = 0.00 s, as depicted in figure 5 (a). 
However, with advancing bulging time ySv ,  increases in amplitude until maximum values are reached 
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at t = 6.25 s. This results in a strongly curved velocity profile. Then, the velocity ySv ,  decreases until 

ySv , = 0 at t = 12.50 s, which is shown again with a horizontal line in figure 5 (a). For each of the 
velocity profiles displayed in figure 5, ySv , = 0 at the centerline solid fraction cent

Sf = 0.20. 

 

Figure 5. Profiles of solid velocity ySv ,  between cent
Sf  and zero

Sf (a) and evolution of the 
corresponding maximum velocity at zero

Sf (b). The profiles are calculated for simulation case III. 
 
Figure 6 compares the velocity profiles at t = 6.25 s calculated for simulation cases I-V. For each 

of these profiles, ySv , = 0 at the centerline solid fraction cent
Sf and ySv , = zero

ySv ,  at the zero-strength solid 
fraction zero

Sf . Since the bulging velocity profile shown in figure 3 is used for simulation cases I-V, 
zero

ySv ,  is identical for each case at a particular time t . Equations (12) and (13) are suggested to fit the 
calculated velocities for solid fractions between cent

Sf  and zero
Sf : 

( )Ψ

S
zero

ySyS fvv −= 1,,  (12)

( )
( )b

S
zero

S

S
cent

S

ff

ff
aΨ

−

−
=  (13)

In equation (13), a  and b  are dimensionless fit constants. With a = 4.0 and b = 0.8 the fitting curves 
approximate relatively well the obtained simulation data. Exemplary, the fitted velocity profiles at the 
maximum bulging amplitude (bulging time t = 6.25 s) are shown in figure 6. 

 

Figure 6. Velocity profiles at t = 6.25 s for simulation cases I-V. Each dot marks the calculated 
velocity ySv ,  at a certain mesh element. The continuous lines are fitting curves of ySv , . 
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As shown in figure 6, equations (12) and (13) are suitable to fit the results of simulation cases II-V, 
but they do not fit the results of case I. Thus, these comparatively simple fit equations are not 
applicable to very small solid fractions. Nevertheless, this can be accepted, since previous simulations 
have shown that small solid fractions at the strand centre have only a minor influence on the formation 
of centreline macrosegregation [15]. 

3.2.  Solidification simulations 
The obtained relationship between solid fraction and deformation velocity is then used for fluid flow 
simulations to predict macrosegregation formation in steel continuous casting. For this reason, a two 
dimensional horizontal continuous casting strand is modeled. Details about the 25 m long strand 
geometry and about the basic model definitions are explained in [15], where the exponential approach 
of equation (14) is used instead of equation (12) to describe the dendrite deformation. However, the 
function Ψ  in equation (14) is calculated with equation (13), but with a = 50 and b = 0.25. 

( )Ψzero
ySyS vv e1,, −=  (14)

The fundamental conservation equations used for the numerical multiphase model in [15] as well as 
in the current paper are described in [18-21]. Although this model basically includes three phases, the 
equiaxed phase is not considered in the current simulations. According to equation (15) the mixture 
concentration of carbon, C

MC , is defined to quantify the macrosegregation. In this equation, Sρ  and 

Lρ  are the densities of the solid and of the liquid phase. C
SC  and C

LC  represent the carbon 
concentrations within solid and liquid, Sf  and Lf  are the volume fractions of both phases. 

LLSS

LLLSSS
M

ff

fCfC
C

⋅+⋅
⋅⋅+⋅⋅

=
ρρ
ρρ CC

C  (15)

Figure 7 (b) shows the macrosegregation profiles of carbon obtained at the outlet of the simulation 
domain considering solid phase velocities after equations (12) (present work) and (14) (exponential 
approach [15]), respectively. At the outlet position, the cross-section of the continuous casting strand 
is totally solid ( Sf  > 0.95). Hence, it is not possible to modify the macrosegregation being observed at 
this position. The simulations deliver the typical macrosegregation profiles occurring in continuous 
casting of steel: a strongly positive segregation peak at the strand centre accompanied with a negative 
segregation valley beside. 

 

Figure 7. Typical macrosegregation pattern (a) and smoothed segregation profiles at the outlet of the 
modeled casting strand (b). Continuous blue line: velocity definition after equation (12), dashed 

green line: velocity definition after equation (14), black line: initial concentration of carbon. 
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4.  Conclusions 

In the current paper, a general possibility to combine thermo-mechanical simulations of deforming 
dendrites at microscale level with CFD simulations to predict centreline segregation formation in 
continuous casting at macroscale level is presented. In the numerical two-phase model used for CFD 
simulations, the solid phase velocities in both coordinate directions must be predefined. Particularly, 
quantifying the deformation speed of the solid dendrites at the strand centre is necessary, which is 
achieved with thermo-mechanical simulations. Therein, the complex dendritic morphology is approxi-
mated with a simple conical model geometry being compressed with a sinusoidal load amplitude 
representing strand bulging during the casting process. 

The simulation results indicate that the dendritic deformation velocity is immediately influenced by 
the solid fraction at the centreline of the casting strand. For low centreline solid fractions, dendritic 
deformation is concentrated at the dendrite tips at the strand centre region. In this case a comparatively 
rapid decay of the solid velocity at the centre can be observed. However, with increasing centreline 
solid fractions the deformation zone extends along the dendrite axis. Based on these simulation results 
a relationship is proposed to describe the deformation velocity depending on the solid fraction. This 
relationship is then used in subsequent CFD-simulations to examine macrosegregation formation in 
strand casting. The results show a strongly positive segregation peak at the strand centre accompanied 
with a negative segregation valley beside, which is typical for strand casting of steel. 

Due to a lack of geometry data, the complex dendritic morphology is simplified in the current 
thermo-mechanical simulations. Thus, the influence of side arms and the interaction of adjacent 
dendrites particularly at higher solid fractions are not considered. Simulations using more realistic 
dendritic morphologies captured with experimental methods (e.g. X-ray computed tomography or X-
ray synchrotron analysis, serial sectioning techniques, etc.) would be of further interest to improve the 
understanding of the deformation behaviour. 
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