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A numerical model was proposed to simulate casting of an outer shell of a work roll made by the horizontal centrifugal 

casting (HSC) technique. The present paper is focused on the mathematical description of the average flow dynamics of 

the liquid metal spreading inside the horizontally rotating mold. Later, we will target on the simulation of the whole 

casting process (~35 min) which requires an extremely efficient flow algorithm. Therefore, the 2D shallow water 

equations (SWE) were adopted and modified omitting the momentum in the radial direction and taking into account 

forces such as the centrifugal force, the Coriolis force, the gravity force, the bed shear force, the shear force due to 

turbulent effects, the wind shear force, and forces arising from the spatially variable topography. The variable 

topography will later represent the solidifying liquid/solid interface. An approximate Riemann solver was developed 

using the standard and corrected Roe averages. Each wave was upwinded using the Godunov’s method. The High 

Resolution corrections (HR) were applied using flux limiters (MC) to keep possible sharp discontinuities in the solution. 

Transonic waves leading to the expansion shocks were prevented by an extra degree of freedom giving the algorithm a 

natural entropy fix. All source terms were physically bounded and well-balanced for steady states (producing non-

oscillatory solutions). The well-balancing is shown on 1D examples. The effect of forces on the shape of collapsing 

parabola is shown in 1D in the circumferential direction. Steady state profiles of the liquid height under action of the 

gravity are discussed for the cases with initially uniform liquid height and a hump in the topography. 

 

 

1.  Introduction 

 
The horizontal centrifugal casting of rolls is a unique casting technique during which a cylindrical mold rotates around 

its horizontal axis of symmetry and a melt is due to the extreme centrifugal force (~100G) pushed against the mold wall 

forming the outer shell of the work roll. The schematic of the process is shown in Fig.1. The liquid metal is brought via 

the filling arm inserted from one side of the mold approximately at the mold center. The mold filling takes 

approximately 2 minutes and the flow rate is about 30 kg/s. During the mold filling the liquid metal adheres to the mold 

and creates a ring around the circumference. As the filling proceeds, the ring expands towards the mold extremities. 

Before the mold extremities are reached (~10 s) parallel fronts of the ring on both sides are disrupted into a finger-like 

pattern (Fig.2). Due to the interaction of the forces and the solidifying liquid/solid interface, various wave patterns can 

occur on the free surface [1]. After 15 minutes the outer shell is partially solidified and an intermediate layer is cast (a 

grey cast iron). After ~35 minutes the braking starts and the process of the centrifugal casting is finished. The mold is 

moved to the vertical position and the core (a grey cast iron) is cast using the gravitational casting. The intermediate 

layer makes a necessary bond between the outer shell and the core. The thickness of the outer and the intermediate shell 

is approximately 70 mm and 50 mm, respectively. The reason why the outer shell of the work roll is cast using the 

centrifugal casting technique is simply because it gives superior mechanical properties such as the rupture strength, the 

rupture strain, and the Young modulus [2], which in turn increases the durability, the reliability, and the productivity of 

the work roll in a rolling mill. 

 

Since we target on the numerical simulation of the whole centrifugal casting with a special focus on the flow 

calculations, we need to build a cheap, but still an accurate mathematical model. Recently, Kaschnitz [3] performed a 

numerical study concerning the horizontal centrifugal casting namely casting of pipes. The commercial CFD package 

FLOW3D was used for this purpose. In order to avoid extremely low time steps, momentum equations were solved in 

the rotating frame of reference. However, due to a very small wall-to-length thickness ratio, one simulation still took 

considerably long time (~20 days). Another study on the horizontal centrifugal casting was carried out by Xu et al. [4]. 

The VOF model was used to reconstruct the interface between the air and the solidifying metal. The main goal was to 

investigate the effect of two different filling systems on the temperature distribution on the outer wall of the mold. It was 
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found that with the filling arm moving back and forth more uniform temperature distribution can be achieved compared 

to the classical static filling. The simulation results are shown until 30 s. The solidification is not discussed in the paper. 

Next, the full 3D numerical study of the full horizontal centrifugal casting was done using again the VOF model 

incorporated in the commercial software STAR-CD V4 [5]. The mesh inside the mold was entirely constructed out of 

rather coarse polyhedral elements, which allowed notably large time steps (~0.01 s). Only the continuity and momentum 

equations were solved for the flow. Heat transfer and solidification were not discussed in the paper. Results from 

simulations showed roughly how the melt is spreading during the filling, but no details are given on how the filling was 

realized and whether the model could capture some free surface patterns or not. 

 
 

Fig. 1 A schematic of the horizontal centrifugal casting 

 

Several excellent experimental studies gave us a lead about the behavior of the free surface of the liquid inside a 

laboratory plexiglass mold, stagnant points, and last not least some fundamental insight into the otherwise opaque 

process of solidification. Recently, in-situ experiments were performed [6], in which the Succinonitrile-1 mass% water 

alloy was poured in a rotating glass cell and the movement of the equiaxed crystals was observed by means of the high-

speed camera. They found that the relative path of the arbitrarily chosen equiaxed crystal associated with a fix point on 

the mold oscillates and travels in the anti-rotational direction. This phenomenon can be attributed to the interaction 

between the inertia of the crystal and the 3D flow influenced by effects of the gravity and vibrations. An excellent paper 

[7] describing various flow regimes during the horizontal centrifuging was done to study the influence of the angular 

frequency Ω and the liquid height h on waves appearing on the free surface. It was surprisingly found that with 

increasing the angular frequency the free surface was more disturbed mainly due to inherent mechanical vibrations. For 

low Ω the free surface formed purely cylindrical pattern. With increasing Ω a free surface pattern was passing through 

the regime with helical waves, then orthogonal, and eventually “orange skin” waves. Mathematical formulas were stated 

for vibrations and axial deformation of the mold to analytically investigate free surface patterns.  

 

 
 

Fig. 2 A snapshot taken during the real casting; a side view inside the rotating mold with the liquid metal 

approaching the mold extremity at ~10 s 

 

In the present paper we focus on the development and description of a highly efficient and yet still accurate flow 

algorithm solving the modified shallow water equations. In brief, the SWE were originally derived in one dimensional 

form as so-called Saint-Venant equations [8] and nowadays are commonly used for modelling purposes of oceanography 

and meteorology. The 2D SWE are derived from the 3D Euler equations and the continuity equation leaving out the 

momentum in the vertical direction and integrating mass and momentum in the horizontal direction along the liquid 

height. From the asymptotic series of the static pressure only the first term, the hydrostatic pressure is considered and 
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terms with higher derivatives are neglected. This as a hydrostatic condition is a leading order approximation to the static 

pressure and is relevant for flows where a horizontal scale L is large compared to a characteristic height H [9]. Note that 

no assumption is made about amplitudes of waves on the free surface. All the nonlinearities are retained. The original 

SWE are strictly hyperbolic nonlinear PDEs. 

 

2.  Numerical model 
 

2.1  Shallow water equations in the original form 

 

The shallow water equations (SWE) are suitable for a numerical description of so-called gravity waves i.e. waves 

formed and propagated under action of the gravitational acceleration. In 2D, the continuity and momentum equations 

take the following form: 

    0 yxt hvhuh  (1) 

and 
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where h is a liquid height, g is the gravitational acceleration, and u, v are the mass-flow averaged velocity components in 

the x- and y-direction, respectively. Note that the indexes represent temporal and spatial derivatives. 

 

2.2  Modified shallow water equations 

 

The original SWE (eq.1-2) were modified to simulate the average flow dynamics of the liquid layer spreading inside a 

horizontally rotating mold. During the observation of the real casting, the liquid melt seems to quickly pick up the speed 

of the rotating mold; therefore, the choice of the rotating frame of reference is reasonably advocated. The fictitious 

forces such as the centrifugal force, Fc, and the Coriolis force, FC, are thus taken into account. In addition, other forces 

such as the gravity force, Fg, the bed shear force, Fµ, the shear force due to turbulent effects, Fs, and the wind shear force, 

Fw, were included. Next, the SWE were derived for the variable topography b representing the actual position of the 

liquid/solid interface. (Heat transfer and solidification are beyond the scope of this paper). The continuity equation stays 

unmodified (eq.1), whereas the momentum equations are totally changed. The momentum equation in the axial direction 

is given by: 
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In the tangential direction the momentum equation becomes: 
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All the forces acting in the radial direction have to be decomposed into the gradient (with the x- and y-components) of 

the equivalent hydrostatic pressure integrated over the liquid height h. Note, x- and y-components of the force defined in 

such a way contains slopes of the liquid height h (and slopes of the topography b) in the corresponding directions. The 

first term on the left hand side of eq.3 and eq.4 is an unsteady term. The second term on the left hand side of eq.3 and 

eq.4 stands for the flux function written in the conservative form. It comprises the convective term, the part of the 

centrifugal and Coriolis force both arising from the gradient of liquid height h. Other forces are moved on the right hand 

side where each is playing a role of a source term. Both, eq.3 and eq.4 are divided by density ρ. 

 

As mentioned in [10], we have to make certain assumptions about the velocity variation in the radial direction. The flow 

is expected to be fully-hydrodynamically developed and we assume a parabolic velocity profile with a no-slip condition 

on the underlying topography. Further, we assume that the liquid metal is a Newtonian fluid. From these assumptions we 

can easily derive the bed shear force, which is in the x-direction given by: 

h

u
F




 3 , (5)   
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where μ and ρ are a dynamic viscosity and a density, respectively. Turbulent and dispersive effects, which are 

encountered during the real centrifugal casting, are included by applying a turbulent shear force given by: 

uucF fs  , (6) 

where cf is a friction coefficient. In addition, we also consider a wind shear force, which acts on the free surface and 

shears the liquid in the anti-rotational direction. It can be written in the following form: 

 RvRvcF ww  , (7) 

where Ω is the angular frequency of the rotating mold, R is the inner radius of the mold, and cw is a friction coefficient 

on the free surface. The wind shear force Fw acts only in the tangential direction. 

The gravity force Fg can be projected onto unit vectors in the radial and tangential direction. The radial component again 

needs to be processed and finally makes a contribution to both, eq.3 and eq.4. On the other hand, the tangential 

component only appears in eq.4. In the tangential direction, the gravity force Fg can be written as the following: 

    
yyg bhtghtghF  cossin ,  (8) 

where the first term corresponds to the tangential component, whereas the second term with the slope of the free surface 

stands for the radial component. A part of the centrifugal force is included in the conservative flux on the left hand side 

of both momentum equations. A part of the centrifugal force resulting from the variable topography b takes the 

following form: 

xc RhbF 2 . (9) 

Eq.9 applies to the axial direction. Analogically, the component of Fc can be determined in the tangential direction. A 

similar strategy is used also for the Coriolis force. A part is included in the conservative flux and a remainder is applied 

as a source term FC. Note that the Coriolis force was derived assuming a parabolic velocity profile mentioned earlier. 

The Coriolis force FC in the x- and y-direction is given by: 

xxC vhhvbF 2

4

5
2     (10) 

and    

yC hvbF  2 , respectively. (11) 

Eq.1, eq.3, and eq.4 are modified shallow water equations for solving the average flow dynamics of a single layer 

spreading over a variable topography (liquid/solid interface) in a horizontally rotating cylindrical mold. We tried to 

solve this system of nonlinear PDEs using the Euler-Euler multiphase model available in the commercial CFD package 

FLUENT, but the calculations were rather heavy and results were inaccurate (numerical diffusion and dispersion). For 

more details see [11]. In the present paper we focus on a development of an approximate Riemann solver, which is 

discussed in more details in the next chapter. 

 

2.3  An approximate Riemann solver  

 

The SWE (eq.1, 2) are strictly hyperbolic PDEs, which means that the Jacobian is diagonalizable with the real 

eigenvalues. The SWE can be symbolically written as the following: 

    0,,  yxt qyqBqxqAq , (12) 

Where A and B are Jacobians in corresponding directions. Using the eigenvalues with the corresponding eigenvectors 

the system of coupled PDEs can be transformed in a set of decoupled advection equations that can be solved separately. 

The Riemann solver is used to determine fluctuations (or fluxes) through the faces of a computational cell; therefore, the 

Riemann problem has to be solved for a discontinuity in each variable given by left and right state on each cell interface. 

Theoretically, the true Riemann solver can be applied giving an exact solution. However, it requires solving nonlinear 

equations, which increases computational costs extensively. It is rather convenient and without noticeable loss in 

accuracy to use an approximate Riemann solver, which is basically based on an appropriate linearization of the Jacobian 

matrix (Roe solver [12], HLLE [13], etc.). Since we update the solution using the Godunov’s splitting method, the 1D 

Riemann problem is solved for each direction separately. In the present paper, we explain the 1D approximate Riemann 

solver in the tangential direction. The Riemann solver in the x-direction is analogical and the derivation is easier. 

Concerning the 1D Riemann solver in the tangential direction, the vector of state variables is given by: 

 Tjijijijijiji BHVHUHQ ,,,,,,   , (13) 

where i, j are cell indices, Ψ is the flux function from eq.4, and B is a height of the variable topography b. The 

topography b is included in the vector of state variables (eq.13) as a stationary wave i.e. a jump in the  topography leads 

to a discontinuity in the solution at y=0 moving with the zero speed. This approach is used to apply source terms 
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including the slope of the topography and in fact, it can be used to apply any source term. The source term is upwinded 

with the solution and is part of the Riemann solver. This approach is commonly advocated [14]. The fractional stepping 

[15] is also an option, but it can easily produce spurious results especially when steady states are expected. It is known 

that an approximate Riemann solver can accurately treat shocks and narrow rarefaction fans in either subsonic or 

supersonic regime. However, it usually fails when transonic rarefaction occurs. Expansion shocks can appear and the 

entropy is violated. An entropy fix has to be applied to avoid expansion shocks. We include an extra degree of freedom 

by including the flux function Ψ in the vector of state variables, which leads to an overdetermined system with an extra 

degree of freedom. With an appropriate choice of the wave speed the algorithm with the natural entropy fix can be 

obtained. Eigenvalues of the Jacobian B are the following: 
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The corresponding eigenvectors take the form: 
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The purpose of the Riemann solver is to decompose jumps in the state variables using the wave strengths α
p
 for 

p = 1, 2, …, 4. Such decomposition can be written as the following: 


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Wave strengths α
p
 are obtained by solving a system of linear equations: 

1,,  jiji QQR , (17) 

where R is a matrix of eigenvectors and α is a column vector of wave strengths. In eq.14, the choice of h and v at the cell 

interface is not straightforward. This is where the linearization namely the Roe linearization of the Jacobian matrix 

comes into play. The Roe linearization is based on the Rankine-Hugoniot condition and finds special averages (Roe 

averages) to h and v so that the left and the right states are always connected by a single wave. These special averages 

are given by: 

2

1,,
2/1,







jiji
ji

hh
h    (18) 

1,,

1,1,,,

2/1,
ˆ











jiji

jijijiji

ji
hh

hvhv
v  (19) 

Analogically, the Roe average 2/1,
ˆ

jiu can be determined. The Roe linearization is justified by the fact that each 

Riemann problem will have a large jump in at most of one wave family, in other wave families the solution will be 

smooth; thus the corresponding jump will be weak. Using eq.18 and eq.19 in the original set of SWE fulfils conditions 

of the Roe linearization. However, using eq.18 and eq.19 in the modified SWE (eq.1 and eq.3-4) does not. The velocity 
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average v in the term 5/2Ωhv in both λ

1
 and λ

2
 has to be corrected and this special average is given by a sum of the Roe 

average 2/1,
ˆ

jiv and the velocity correction as the following: 
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Using this correction in the term 5/2Ωhv (eq.14) along with the Roe averages eq.18 and eq.19 fulfils conditions of the 

Roe linearization. Note that the wave in the 3
rd

 wave family (λ
3
) is linearly degenerate and there is a strong analogy to 

the transport of a passive tracer. The wave speed λ
4
 is defined as the arithmetic average of the λ

1
 and λ

2
, which ensures a 

natural entropy fix in the case of a transonic rarefaction. The last eigenvector r
5
 is related to the source term containing 

the slope of the topography namely the source term for the centrifugal force Fc resulting from the variable topography. 

The source term part of the Riemann solver and is applied as a stationary discontinuity with the wave speed λ
5
 = 0. Note 

that some elements in r
5
 require a certain scaling with respect to the wave speeds λ

1
 and λ

2
. This is related to the well-

balancing of steady states, which is discussed in the next chapter.  

 

Another remark could be stated to the topic of the hyperbolicity. The original SWE are strictly hyperbolic, whereas the 

modified SWE are not. In other words, at least one of the eigenvalues of the Jacobian B is not a real number. A critical 

velocity vc exists and can be calculated from λ
1
 or λ

2
 (eq.14) as the following: 

Rvc 
5

2
. (21) 

For a mold rotating in the positive direction, a typical mold radius R = 0.372 m, and an angular frequency Ω = 71 rad/s 

vc becomes approximately -10.5 m/s. We see that the hyperbolicity is lost for velocity v < vc and no bound thus exists for 

positive velocity v. During the real casting velocity magnitudes are expected to be in order of 0.1 m/s. Nevertheless, this 

possible loss of hyperbolicity is treated by solving the original SWE with appropriate source terms, which is strictly 

hyperbolic. Another trouble may arise from the fact that the Roe solver is generally not depth-positive meaning that the 

Riemann solver can give a negative height h of the liquid. A simple remedy can be done using so-called Einfeldt speeds 

originally suggested for the HLLE solver. The wave speeds λ
1
 and λ

2
 are modified using the following formulas: 

  1

2/1,1,

11 ˆ,min  jijiQ   

   2

2/1,,

22 ˆ,max  jijiQ   (22) 

 

2.4  Well-balanced source terms 

 

Well-balanced source terms are source terms, which exactly balance the left hand side of both, eq.3 and eq.4 in the case 

when time derivatives of the state variables are zero. From the eigenvector r
5
 it is obvious that we need to find some 

suitable average for λ
1
λ

2
. We will show that we will eventually need two different averages for λ

1
λ

2
. For the sake of 

brevity, we only show the derivation for the centrifugal force Fc resulting from the variable topography. The first 

average 
21  is derived from the momentum equation in the tangential direction omitting the local acceleration, which 

can be written as the following: 
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Keeping in mind   0thv , we can express eq.23 as a function of yh as the following: 
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Similarly, we can find the second average denoted by λ
 
λ

 ̂
 derived from Ψy again expressed as a function of yh : 

    λ
 
λ

 ̂    (26) 

The average λ
 
λ

 ̂
 becomes: 
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 |vi  vi  - | - Ω
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Substituting hy from eq.24 for hy in eq.27 gives: 

    λ
 
λ

 ̂   λ 
λ

 ̅̅ ̅̅ ̅ Ω  h ̅  , (28) 

which is the proper balancing of (r
5
)

4
. Note that we do not need to balance (r

5
)

2
 simply because it does not appear in the 

solution of the system of linear equations given by eq.17. A special care has to be taken regarding the sign of 
21 and 

λ
 
λ

 ̂
. Since both averages stand for an approximation to λ

1
λ

2
, both have to be negative for a subsonic flow and positive 

for a supersonic flow. In addition, the ratio of λ
 
λ

 ̂
 and 

21 is always positive and greater than unity for a subsonic flow 

and less than unity a supersonic flow. If any of these conditions is not satisfied, than we are dealing with a sonic point 

and it is not possible to decide about the sign of the source term. In a sonic point we simply set (r
5
)

1
 to zero and drop out 

the ratio in (r
5
)

4
. 

Similar steps (eq.13-28) are followed when solving the 1D Riemann problem in the axial direction. Note that each 

source term has to be limited by a certain physical bounds, which is especially required in the cases that are far from 

steady states. Next, in near dry regions source terms have to be also limited in order to avoid occurrence of negative 

heights in the solution. 

 

2.5  Godunov’s explicit updating formulas with High Resolution corrections 

 

The wave speeds λ
1
, λ

2
, λ

3
, and λ

4
 with corresponding eigenvectors r

p
 and wave strengths α

p
 are used to construct 

fluctuations and explicit updating formulas are used to update the solution. As mentioned earlier, we apply the 

Godunov’s splitting algorithm to solve the 2D SWE i.e. for each direction we solve the 1D Riemann problem and update 

the solution. (We also tested the Corner-upwind method, but we did not observe any significant differences in results on 

the uniform structured orthogonal grid.) Here, we again show the updating formulas for the y-direction. The formulas for 

the x-direction are analogic. The Godunov’s updating formula takes the form: 

 n
ji

n
ji

n
ji

n
ji QBQB

dy

dt
QQ 2/1,2/1,,

1
, 




   , (29) 

where dt and dx is a time step and a grid size, respectively. The size of the time step is limited by the CFL condition. The 

algorithm including all the source terms is stable for 1CFL . n
jiQB 2/1, 

 and n
jiQB 2/1, 

 are the right and left going 

fluctuations, which can be calculated using the following formulas: 
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p
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p
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p

p
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n
ji rQB

p

2/1,2/1,

0:

2/1,2/1, 




  



 (30) 

The Godunov’s method (eq. 29) is only first order accurate and it shows a great deal of numerical diffusion. On the other 

hand, the method is not dispersive and it treats correctly the wave speeds i.e. it does not produce phase errors. The order 

of accuracy can be efficiently increased by adding so-called high resolution corrections with flux limiters. A piece-wise 

constant appro imation of data in the Godunov’s method is replaced by a piece-wise linear approximation. However, to 

avoid overshooting especially at sharp discontinuities, the flux limiters are applied. Such scheme is still free of 

numerical dispersion (or TVD scheme) and on smooth solutions is second order accurate. High resolution corrections 

are applied by including correction terms in the updating formula (eq.29), which becomes: 

   n
ji

n
ji

n
ji

n
ji

n
ji

n
ji GG

dy

dt
QBQB

dy

dt
QQ 2/1,2/1,2/1,2/1,,

1
,

~~





  . (31) 

The correction term n
jiG 2/1,

~
  ( n

jiG 2/1,

~
 ) are defined by the following formula: 

p
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p
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

 



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


   , (32) 

where p
jiW 2/1,

~
 is a limited version of p

ji
p
jir 2/1,2/1,   . In our model, we have applied the MC limiter [16]. 
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3.  Results and Discussion 
 

All simulations were run on the uniform structured orthogonal grid with the axial and tangential dimension 

corresponding to the length and the circumference of the mold, respectively. The angular frequency Ω was constant

rad/s54 . The mold was rotating in the positive direction. The time step dt was held as large as possible 

corresponding to the 95.0CFL . Number of cell along the axial and tangential direction was 160 and 117. 

 

First of all, we show results from several 1D simulations in the tangential direction i.e. around the mold circumference. 

Results are presented in the form of 2D plots, in which the horizontal axis denotes the circumferential position in meters 

and the vertical axis denotes a desired variable such as the liquid height h, velocity v, etc. Firstly, we demonstrate that 

the algorithm is well-balanced for a steady state. A flat free surface resting upon a variable topography with a parabolic 

bump should stay calm and flat forever (gravity switched off). The parabolic bump however acts as a strong source term 

and if the algorithm was not well-balanced, the solution would quickly develop into artificial waves travelling on the 

free surface. In Fig.3, we see the plot of the liquid height h, the topography b, and the velocity v at s60t . The free 

surface obviously remains flat and velocities are negligible (<10
-12

 m/s) and bounded in time. Therefore, we can state 

that the algorithm is well-balanced. 

 

 
 

Fig. 3 Preserving a steady state of a liquid layer (blue) over a variable topography (red) at 60 sec 

 

If we turn the gravity back on, we can study a steady state of the liquid layer namely the profile of the liquid height h 

and the velocity v with respect to the bottom of the mold. In the flow regime when there is no recirculation of the liquid 

in the radial direction, the liquid height h should be larger at the top of the mold than in the bottom. To fulfil the 

continuity equation the situation should be opposite for the velocity field i.e. larger velocity in the bottom than at the top. 

This will only hold when the rotating frame of reference is applicable, which means that each portion of the liquid feels 

the fictitious forces. Note that this is also one of the assumptions of our numerical model. We started the simulation with 

initially uniform liquid height h, zero velocity v everywhere, and the topography m0b . Due to the interaction of the 

inertial forces and the gravity two counter going waves appears on the free surface. Later, these waves gradually vanish 

until a steady state is reached, which is shown in Fig.4 at s60t . The position of the mold bottom is shown as a grey 

dashed line. Although the liquid layer is just slightly curved, the difference in the velocity profile is enormous (~0.4m/s).  

Through every revolution of the mold the liquid has to accelerate and decelerate, which exerts extreme forces on the 

solidifying structure resulting in breaking of dendrite arms and an oscillatory movement of the equiaxed crystals. This 

topic is discussed in details in experimental work perfomed by Esaka et. al [6]. Note that the velocity profile in Fig.4 is 

typical for the horizontal centrifugal casting. No such profile can be observed in a similar process of the vertical 

centrifugal casting. 
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Fig. 4 A steady state of a liquid layer (blue) and a velocity profile (black solid line) at 60 s; the position of 

the mold bottom denoted by grey dashed line 

 

An interesting steady state will be reached when we place a parabolic hump in the bottom of the mold, the same as the 

hump in Fig.5 except that the amplitude is only 10% of the initial liquid height. In Fig.5, we can see the steady state of 

both the liquid height h and velocity v again at 60 s. The free surface is disturbed by sharp discontinuities with 

approximately uniform spacing. Number and amplitude of discontinuities depends on the angular frequency Ω, the mold 

radius R, the initial liquid height h, and other parameters. 

 

If we now move from 1D simulations to 2D simulations not many things will change at least concerning the case with 

the topography m0b (Fig.4). The results are shown in 3D plots, in which the horizontal plane demarcates the unfolded 

inner wall of the mold by the axial and circumferential position and the vertical axis denotes the liquid height h. The 

colormap is shown to pick out the variation of the liquid height h. In Fig.6, the steady state is shown for the initially flat 

free surface with zero velocities (u,v) and the topography m0b . The extension to 2D obviously does not change a 

steady state profile when compared to Fig.4. 

 
 

Fig. 5 A steady state of a liquid layer (blue) and a velocity profile (black solid line) over a parabolic hump 

at 60 s; the position of the mold bottom denoted by grey dashed line 
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Fig. 6 A 2D steady state of a liquid layer at 60 s; the position of the mold bottom is denoted by the blue marker  

 

When a paraboloid is placed as a variable topography b in the center of the horizontal plane, again a steady state will be 

reached but completely different to that shown in Fig.5. Waves can propagate and reflect in infinite number of 

directions; therefore, the resulting free surface pattern is much more rich. The position of the paraboloid is projected on 

the free surface and circular wrinkles are formed around. The basic steady state (shown in Fig.6) is still visible i.e. larger 

height at the top than in the bottom. However, if the amplitude of the paraboloid was larger, the basic state would 

disappear. In addition to circular wrinkles formed around the paraboloid in Fig.7, several annular waves are perceptible. 

 
 

Fig. 7 A 2D steady state of a liquid layer over a paraboloid at 60 s; the position of the mold bottom is 
denoted by a blue marker  

 

4.  Conclusions 
 

To avoid solving full 3D rather expensive multiphase flow of the liquid layer spreading inside a horizontally rotating 

cylindrical mold, the 2D shallow water equations (SWE) were modified by including the centrifugal force, the Coriolis 

force, the bed shear stress, the wind shear stress, turbulent and dispersive effects, and variable topography representing 

at the current stage a static liquid/solid interface. In the previous papers of ours [10, 11], we used the commercial CFD 

software FLUENT namely the multiphase Euler-Euler model to solve the modified SWE. The computations were rather 
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heavy and due to significant numerical diffusion and dispersion also inaccurate. Since the SWE belong to the group of 

hyperbolic PDEs, we decided to change our solution strategy and developed an approximate Riemann solver. To update 

the solution in time, we adopted e plicit updating formulas originally developed by Godunov. The Godunov’s method is 

only first order accurate and due to the piece-wise constant approximation of data the method possesses a significant 

numerical diffusion. We applied so-called high resolution corrections with flux limiters (MC limiter) so that the order of 

accuracy was formally increased up to the second order. To update the solution in 2D, we used the simplest Godunov’s 

splitting algorithm to keep the efficiency of the code. (We also tested the more expensive Corner-transport upwind 

method with the transverse Riemann solver; however, we did not observe any significant differences in the solution.) 

The Riemann solver was based on approximating the Jacobians using the Roe averages. Special correction for the 

velocity related to the Coriolis force had to be applied in order to fulfill the Roe’s linearization. The algorithm is 

however not depth-positive i.e. negative liquid heights can occur. To prevent negative heights, the wave speeds are 

modified by means of using Einfeldt speeds originally developed for the HLLE solver. All the source terms were 

included in the Riemann solver as a stationary wave. In addition, the source terms were physically bounded and well-

balanced by using the special averages of λ
1
λ

2
, which is demonstrated in Fig.3. A certain caveat exists concerning the 

sonic point, in which we are not able to decide about the sign of the special averages of λ
1
λ

2
. A treatment of transonic 

rarefactions (entropy fix) was realized by an extra wave in the Riemann solver with the speed equal to the arithmetic 

average of λ
1
 and

 
λ

2
. 

 

The algorithm is fully explicit (the time step controlled by the CFL number, 1CFL ) and formally second order 

accurate. The algorithm was written in MATLAB and on the same machine the serial code runs approximately 40times 

faster than the former model in FLUENT. On several 1D and 2D results we show the capability of the model to capture 

the steady states and briefly explain impacts of such steady states such as breaking dendrite arms, oscillatory motion of 

the equiaxed crystals, or the effect of the underlying topography on the free surface pattern. We believe that with this 

efficient algorithm we can later simulate the whole process of the horizontal centrifugal casting (~35 min). 
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