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Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite
diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al.,
2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation
of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting
(50 � 50 mm2) of Fe–0.45 wt.%C–1.06 wt.%Mn considering thermo-solutal convection and crystal sedi-
mentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as
assumed by classical models (e.g., the Gulliver–Scheil or lever rule), which cannot properly consider
the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification,
might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further the-
oretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sed-
imentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error
of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal mor-
phology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the
results are compared with experimental results. This example demonstrates the model applicability
for engineering castings regarding both the calculation efficiency and functionality.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Part 1 of this two-part investigation presented a multiphase
solidification model that incorporated the finite diffusion kinetics
and ternary phase diagram with the macroscopic transport phe-
nomena [1], and this model was used to analyze the solidification
of a ternary alloy (Fe–0.45 wt.%C–1.06 wt.%Mn) for cases without
flow. The finite diffusion kinetics in both the liquid and solid were
observed to play an important role in the formation of the micro-
segregation and solidification path, especially at the initial stage
of solidification. Under normal casting conditions (where the cool-
ing rate is not too high), the finite diffusion in the solid was recog-
nized as an important phenomenon governing the solidification
path [2]; however, the importance of finite diffusion in the liquid
has not been paid sufficient attention because for most technical
alloys, the diffusion coefficient of the liquid is 2 to 3 orders of mag-
nitude larger than that of the solid. Researchers normally believe
that the liquid can be treated as infinite mixing; hence, models
such as the lever rule, Gulliver–Scheil, Brody–Flemings [3], and
Clyne–Kurz [4] are valid for analyzing the solidification path. In
Part 1, we compared the solidification paths (T � fs curve and path
of (c‘;Mn; c‘;C), etc.) predicted by the models considering different
liquid diffusion kinetics and observed that with the assumption
of infinite-mixing in the liquid (Gulliver–Scheil or lever rule), it
was not possible to model the initial solidification stage adequately
[1]. In ternary (or multicomponent) systems, the diffusion of each
individual element in the liquid plays an even more important role.
Due to the large difference between the two solute elements (C and
Mn) in the diffusion coefficient, partition coefficient, and liquidus
slope, there is initially almost no enrichment of Mn in the liquid,
while the liquid concentration of C is progressively enriched. The
difference between the equilibrium concentration (c�‘;i) and vol-
ume-averaged concentration (c‘;i) of the interdendritic or inter-
granular melt is significant at the initial stage of solidification.
The assumption of c�‘;i ¼ c‘;i by the infinite liquid mixing kinetics
does not apply at this initial stage. This phenomenon has actually
been recognized for decades [2,5–7]; however, the numerical
treatment of the finite diffusion kinetics and its importance in
the calculation of macrosegregation have not been systematically
investigated.
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It is understood that macrosegregation occurs due to relative
motion between the liquid and solid, resulting from different inter-
dendritic/inter-granular flow and crystal sedimentation phenom-
ena [8,9]. The early stage of solidification appears to be the most
critical for the formation of macrosegregation because the signifi-
cant interdendritic/inter-granular flow and crystal sedimentation
phenomena occur at this stage. At the late stage of solidification,
as the dendrite network is developed in the deep mushy zone or
the equiaxed crystals are densely packed, flow becomes less
significant.

Most solidification models applicable for the calculation of mac-
rosegregation are based on a predefined solidification path in
accordance with the lever rule assumption [10–17], the Gulliver–
Scheil assumption [15–23], or an assumption of infinite solute
mixing in the liquid combined with finite solid back diffusion
[24–28]. A comparison study (lever rule against Gulliver–Scheil)
by Schneider and Beckermann [15] for the case of solidification
considering only thermo-solutal convection indicated no signifi-
cant difference in the calculation of macrosegregation. In contrast,
a similar comparison by Sundarraj and Voller [28] for another case
considering shrinkage-induced flow during solidification indicated
a strong difference in the calculation of inverse segregation
between the lever rule and Gulliver–Scheil. A common base of all
of the aforementioned models is the assumption of infinite solute
mixing in the liquid. Only limited studies have been performed
[28–30] that have attempted to incorporate the finite diffusion
kinetics in the liquid with the macrosegregation models; however,
all of these studies were limited to the binary alloy system and
made no distinction (or comparison) between cases of different
crystal morphologies (columnar, equiaxed, and mixed columnar–
equiaxed).

The first volume-average-based model incorporating diffusion
growth kinetics, which considers the multiphase nature, was
developed by Beckermann et al. [31,32]. This model was recently
extended by the current authors to include the mixed columnar–
equiaxed solidification for ternary alloys [1]. The morphology of
the growing crystals is simplified: a cylinder for columnar and a
sphere for equiaxed, such that the diffusion-governed growth
kinetics around and inside the growing crystals can be solved ana-
lytically. The main advantage of this simplification is to enhance
the calculation efficiency, as the computational cost of most mac-
rosegregation models is very high.

Models including both diffusion growth kinetics and dendritic
morphology are also available. Significant advances were made
with the contributions of Rappaz and Thevoz [5,6] who proposed
a micro–macro solute diffusion model for equiaxed dendritic solid-
ification. Following this work, Wang and Beckermann [33–35] sug-
gested a multiphase approach encompassing either equiaxed or
columnar solidification, in which a volume-averaging method
was used to model multiphase transport phenomena including
flow and grain sedimentation. Recently, Ciobanas and Fautrelle
[36,37] proposed an ensemble-averaged multiphase Eulerian
model for mixed columnar–equiaxed solidification, although con-
vection and grain sedimentation were not considered. Rappaz
and Boettinger [7] extended the model of Rappaz and Thevoz to
consider the ternary alloy, and the model was used to analyze
the effect of various diffusion coefficients of the solute elements
on the solidification path. Building upon the major features of
these works, an expanded model (for binary alloys), which encom-
passes mixed equiaxed–columnar solidification, convection, and
grain sedimentation and tracks the evolution of dendritic morphol-
ogies has been presented by the current authors [38–41]. Although
some trials were made using such a model for calculating macro-
segregation [42], the high calculation cost has prevented the model
from being applied recently for calculations of engineering castings.
Additionally, some morphological parameters describing the crys-
tal envelope need to be determined and validated in advance.

In the current paper (Part 2), parameter studies on the same 2D
square casting (50 � 50 mm2) of Fe–0.45 wt.%C–1.06 wt.%Mn as
described in Part 1 [1] are performed, and melt flow and crystal
sedimentation are considered. The study examines the liquid diffu-
sion kinetics (finite diffusion against infinite diffusion) and its
effect on the formation of macrosegregation.

2. Numerical model and simulation settings

A mixed columnar–equiaxed solidification model was
presented previously [43,44], and this model was extended to
consider ternary alloys [1,45,46]. The key features of the model
include:

1. Three phases are considered: liquid (‘), equiaxed (e), and
columnar (c). These phases are quantified by their volume frac-
tions: f‘, fe, and fc, respectively. Simple crystal morphologies are
assumed: spheres for equiaxed (globular) grains and cylinders
for columnar (cellular) dendrite trunks.

2. The solidification (mass transfer) rate is calculated by considering
the growth of the equiaxed crystals and columnar trunks based on
the finite diffusion-governed growth kinetics. Thermodynamic
equilibrium is primarily assumed at the solid–liquid interface,
and solute partitioning occurs at the interface during solidifica-
tion. c�‘;i, c�e;i and c�c;i represent the thermodynamic equilibrium
concentrations at the interface. The volume-averaged concen-
trations of different phases are numerically solved: c‘;i, ce;i, cc;i,
where i = A or B, representing different solute elements. The
growth velocity of the crystal is derived based on a Stefan
problem at the interface by solving the diffusion fields around
and inside the crystals (cylinder or sphere) analytically [1].
The concentration differences (c�‘;i � c‘;i), (c�e;i � ce;i) and
(c�c;i � cc;i) are driving forces for the diffusion and hence driving
forces for crystal growth.

3. The origin of equiaxed crystals is modeled according to a con-
tinuous heterogeneous nucleation law originally developed by
Oldfield [47]. This approach is based on the assumption of many
potential nucleation sites in the parent melt. The nucleation
sites belong to different families. Each family can only be acti-
vated as newly nucleated grains when a corresponding und-
ercooling DT is achieved. The undercooling DT serves as the
only driving force for nucleation. A Gaussian distribution is used
to describe the statistical outcome of all the families of the
nucleation sites.

4. No nucleation of columnar trunks is modeled. The origin of the
columnar trunks is assumed to start from the mold wall, and
the columnar tip front is tracked explicitly. The columnar tip
front grows in the direction closest to the temperature gradient
with a growth velocity, vc

tip, determined by the LGK (Lipton–
Glicksman–Kurz) model [2,43,48].

5. As mentioned above (Point 2), thermodynamic equilibrium sol-
ute partitioning occurs at the interface during solidification.
However, for the condition of a very high cooling rate (or when
the liquid diffusion coefficient of a solute element is very small),
the thermodynamic equilibrium condition at the liquid/solid
interface could be violated, and a solute-trapping phenomenon
would occur [2,49]. The partition coefficient is no longer con-
stant but falls in a range between the thermodynamic equilib-
rium partition coefficient ki and 1, depending on the growth
velocity. In the current model, the growth velocity dependent
partition coefficient is not considered. Therefore, a simple
approach is introduced to consider the ‘solute trapping’. When
the solid-side equilibrium concentration c�e;i or c�c;i becomes
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Fig. 1. Balance of different buoyancy forces as a function of temperature during
solidification. As an example, here, the solidification (columnar or equiaxed) of a
binary alloy (Fe–0.45 wt.%C, poured at 1785 K) is assumed, and the evolution of the
solid fraction and the average liquid concentration is estimated according to the
lever rule.
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larger than the liquid average concentration c‘,i due to rapid
cooling, we assume that the solute in the liquid with the aver-
age concentration of c‘,i is fully trapped in the solid phase. This
treatment is crude but supports the general experimental fact
that the segregation phenomenon disappears in a low-diffusive
alloy under rapid solidification.

6. The velocity fields of the melt flow and moving equiaxed crystals,
u
*

‘ and u
*

e, are solved. The Boussinesq approach is employed to
model thermo-solutal convection and equiaxed crystal sedimen-
tation. The densities of both the liquid and solid phases are assumed
to be equal and constant; however, the thermo-solutal buoyancy
forces (f‘qref

‘ g
*P

i¼C; Mn ½bc;iðcref � c‘;iÞ�þ ðf‘qref
‘ g

*
bTðTref � TÞ) are

added in the momentum conservation equation of the melt,
and the equiaxed sedimentation buoyancy force (feDq g

*
) is

added in the momentum conservation equation of the equiaxed
phase. As an example, the different buoyancy forces as a function
of T are shown in Fig. 1.

For the modeling results, the growth of columnar dendrite
trunks, nucleation and growth of equiaxed crystals, thermosolutal
50
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Tw = 373 K
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Fe-0.45 wt.%C-1.06 wt.%Mn
T0 = 1777 K

(a) Columnar

Fig. 2. A schematic of (a) pure columnar, (b) pure equiaxed and (c) mixed columnar–equi
are also shown in the left half of a).
convection and crystal sedimentation, the columnar-to-equiaxed
transition (CET) and macrosegregation are obtained. The macro-
segregation is normally analyzed according to the distribution of
the mixture concentration, cmix;i ¼

Pn
j¼1fjqjcj;i=

Pn
j¼1fjqj, where j is

the phase index and n is the number of phases considered. Here,
we define two additional quantities: the local macrosegregation
index cindex

i and the global macrosegregation intensity (GMIi). The
former is used to facilitate the evaluation of the positive or nega-
tive segregation according to the sign of cindex

i , and the latter is used
to evaluate the severity of macrosegregation in the entire casting
(volume average over the entire calculation domain Vdomain).

cindex
i ¼ cmix;i � c0;i

c0;i
� 100; ð1Þ

GMI ¼ 1
Vdomain

�
ZZZ

Vdomain

cindex
i

�� ��dV ; ð2Þ

Solidification of a 2D casting (50 � 50 mm2) of a ternary alloy
(Fe–0.45 wt.%C–1.06 wt.%Mn) with three different crystal mor-
phologies (pure columnar, pure equiaxed, or mixed columnar–
equiaxed) is considered, as schematically illustrated in Fig. 2. In
total, 7 cases are defined by assuming different crystal morpholo-
gies and different growth kinetics, as summarized in Table 1. The
thermal boundary conditions for all the cases are identical. The
casting is cooled from an initial temperature of T0 (1777 K) in a
die of Tw (373 K), and the heat transfer coefficient between the
casting and the die is Hw (300 Wm�2 K�1). All the thermo-physical
properties and thermodynamic data refer to the previous publica-
tion [1], as given in Table 2.

3. Columnar solidification

3.1. Solidification sequence and evolution of macrosegregation

The solidification sequences and evolution of macrosegregation
(cindex

max;i) are shown in Fig. 3. The mushy zone and fc-isolines (volume
fraction of the columnar phase) develop from the outer region
toward the casting center. During solidification, a symmetric
convection pattern develops; hence, only half (left) of the domain
is necessarily analyzed. Initially, before solidification starts, the
melt near the mold wall has a higher density due to its lower
= 9.81 m⋅s-2g
v
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axed solidification in a 2D (50 � 50 mm2) domain. The thermal boundary conditions



Table 1
Case definition and some of the simulation results.

Crystal morphology Growth kineticsa GMIC
GMIMn

b cindex
i

b

cindex
C;min

cindex
Mn;min

cindex
C;max

cindex
Mn;max

cindex
C;max�cindex

C;min

cindex
Mn;max�cindex

Mn;min

Col-I Columnar Diffusion-governed 0:26
0:076 ¼ 3:42 �0:94

�0:3
0:85
0:29

1:79
0:59

Col-II Columnar Gulliver–Scheil 0:19
0:066 ¼ 2:83 �0:7

�0:25
0:75
0:27

1:45
0:52

Col-III Columnar Lever rule 0:39
0:134 ¼ 2:91 �0:17

�0:61
5:5

1:95
7:2

2:56

Eqx-I Equiaxed Diffusion-governed 4:1
0:34 ¼ 12:1 �13:8

�1:64
43

1:97
56:8
3:61

Eqx-II Equiaxed Gulliver–Scheil 10
3:5 ¼ 2:85 �23:9

�9:0
85:8
23:1

109:7
32:1

Eqx-III Equiaxed Lever rule 12
4 ¼ 3 �22:8

�8:4
228
46:4

250:8
54:8

Mix-I Mixed Col-Eqx Diffusion-governed 0:38
0:11 ¼ 3:5 �2:82

�0:84
1:52
0:51

4:32
1:35

a The same model of diffusion-governed growth kinetics is used for all cases; however, very large diffusion coefficients (10�6 m2 s�1) of the liquid and/or solid are applied to
mimic the infinite mixing of the solute for the cases using the Gulliver–Scheil and lever rule.

b cindex
i (local macrosegregation index) is defined as the normalized deviation of the local mixture concentration from the nominal composition, Eq. (1), while GMIi (global

macrosegregation intensity) is defined as the volume average of the local macrosegregation index over the entire casting domain, Eq. (2).
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temperature (bT = 1.43 � 10�4 K�1) and thus sinks downwards,
while the hotter melt in the center rises. This process builds a large
anticlockwise circulation loop. As solidification starts, the solute-
enriched interdendritic melt has a lower density (bc,C = 1.1 � 10�2

wt.%�1, bc,Mn = 2.0 � 10�3 wt.%�1) and might rise and thus partially
compensate for or reverse the above convection pattern. However,
the thermal buoyancy appears to dominate over the solutal buoy-
ancy for this initial stage. One can approximately refer to Fig. 1.
Table 2
Material properties and other parameters used for the simulations.

Thermophysical properties
Specific heat Cpð‘Þ;CpðsÞ 500 J kg�1 K�1

Diffusion coeff. D‘;C 2 � 10�8 m2 s�1

D‘;Mn 4 � 10�9 m2 s�1

DS;C 1 � 10�9 m2 s�1

DS;Mn 1.2 � 10�13 m2 s�1

Latent heat Dhf 2.71 � 105 J kg�1

Heat conductivity k‘; ke; kc 34 W m�1 K�1

Thermal exp. coeff. bT 1.43 � 10�4 K�1

Solutal exp. coeff. bc:C 1.1 � 10�2 wt.%�1

bc:Mn 0.2 � 10�2 wt.%�1

Density q‘;qe;qc 6990 kg m�3

Boussinesq density diff. Dq 150 kg m�3

Viscosity l 4.2 � 10�3 kg m�1 s�1

Thermodynamic parameters
Partition coeff. kc 0.36 –

kMn 0.75 –

Liquidus slope mL,C �55 K (wt.%)
mL,Mn �4.8 K (wt.%)

Eutectic temp. TE 1426.15 K
Melting point of Fe Tf 1805.15 K
Gibbs–Thomson coeff. C 1.9 � 10�7 m K
Primary DAS k1 5 � 10�4 m

Process parameters (I.C. and B.C.)
Initial temp. T0 1777 K
Heat transfer coeff. Hw 300 K
Ambient temp. Tw 373 K
Nucleation parameters:
Max. equiaxed number density nmax 2 � 109 m�3

Undercooling for max. nucl. rate DTN 5 K
Gaussian distribution width DTr 2 K

Others
Volume elementa DV 0.653 mm3

Time stepa Dt 0.001 s
Vol. heat transfer between phases H� 10�9 W m�3 K�1

Packing limit f c
e 0.637 –

Entrapment criterion f free
e

0.2 .
CET blocking criterion f CET

e 0.49

a Variation was made for study of mesh sensitivity.
The direction of the sum of the thermal and solutal buoyancy
forces acts downwards initially in the vicinity of the solidification
front, and this direction reverses when a certain fraction of the
solid is developed and the interdendritic melt is sufficiently
enriched in solutes. The reversion point of the buoyancy force
direction depends on the solute enrichment of the melt and hence
on the solidification diffusion kinetics. The downward flow near
the columnar tip region and the upward flow in the bulk are the
primary phenomena that lead to the formation of macrosegrega-
tion during the initial stage. Different segregation zones, A through
F, are developed.

Afterwards, the solutal buoyancy gradually overwhelms the
thermal buoyancy in the mushy region. It is clearly observed that
at 40 s, the rising flow in the interdendritic mushy zone reverses
the flow direction, and two circulation loops gradually develop:
one clockwise in the vicinity of mushy region and one anticlock-
wise in the bulk region. At the late stage of solidification (60 s),
only one circulation loop remains, the one driven by the solutal
buoyancy. Near the casting center, only two typical segregation
zones remain (the positive segregation zone B and the negative
segregation zone E); the rest disappear.

The solidification ends at approximately 95 s. The final segrega-
tion patterns are shown in Fig. 4(a). As the segregation patterns of
the two elements, C and Mn, are almost the same during columnar
solidification, only one of these elements, i.e., C, is analyzed below.
With the assumption of a stationary solid and no solidification
shrinkage, the evolution of the mixture concentration in the mushy
zone can be expressed as [50]:

@cmix;i

@t
¼ �f‘u

*

‘ � r‘;i ð3Þ

i:e:;
@cindex

i

@t
¼ �100

c0;i
f‘u
*

‘ � rc‘;i ð4Þ

The evolution of cmix,i can be analyzed from the flux of the inter-
dendritic melt flow f‘u

*

‘ and the gradient of the liquid concentra-
tion rc‘;i. If both vectors f‘u

*

‘ and rc‘;i point in the same
direction (the angle between the two vectors is smaller than
90�), cmix,i will decrease with time (@cmix;i=@t < 0), leading to the
formation of a negative segregation. If both vectors f‘u

*

‘ and rc‘;i
point in opposite directions (the angle between the two vectors
is larger than 90�), cmix,i will increase (@cmix;i=@t > 0), leading to
the formation of a positive segregation. The solute enrichment in
the interdendritic mushy region is proportional to the solid volume
fraction; therefore, the direction of rc‘;i is almost perpendicular to
the fc-isolines pointing toward the casting’s outer surface. At 8 s,
we observe that the melt flow direction is almost but not perfectly



(a.1) (a.2) (a.3) (a.4)

(b.1) (b.2) (b.3) (b.4)

Fig. 3. Solidification sequence and evolution of macrosegregation during columnar solidification. The results for case Col-I are presented, and finite diffusion kinetics is
considered. The macrosegregation indices, cindex

c (upper raw) and cindex
Mn (bottom raw), are shown in the color scale, overlaid with fc-isolines and u

*

‘ vectors. The different
segregation regions are marked with the symbols A-F. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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parallel to the isoline of fc = 0.01. In the region where the flow
direction tilts into the mushy region, a negative segregation devel-
ops, e.g., A, C and E, while in the region where the flow direction
tilts away from the mushy region, a positive segregation develops,
e.g., B, D and F. This mechanism applies throughout the columnar
solidification process. During the late stage of solidification when
the flow direction changes, the regions achieving positive or nega-
tive segregation will adapt themselves correspondingly.

3.2. Effect of diffusion kinetics

To investigate the effect of diffusion kinetics on the formation of
macrosegregation, calculations of three different cases are com-
pared, as shown in Fig. 4. Col-II and Col-III are calculated to repre-
sent the solidification processes following the lever rule and
Gulliver–Scheil assumptions. The distribution range of the local
macrosegregation index (from cindex

i;min to cindex
i;max) and the global macro-

segregation intensity (GMIi) for each solute element and each case
are summarized in Table 1.

(1) The macrosegregation patterns of the 3 cases are quite
different. Both the cindex

i distribution range (cindex
i;max � cindex

i;min )
and GMIi increase in the order of Col-II, Col-I, Col-III.
Gulliver–Scheil underestimates GMIC and GMIMn by 27%
and 13%, respectively, while the lever rule overestimates
GMIC and GMIMn by 50% and 76%, respectively.
(2) Meso-segregation (small channel) would be predicted by
Gulliver–Scheil and lever rule kinetics, while the finite diffu-
sion kinetics did not predict such meso-segregation. Both
the Gulliver–Scheil and lever rule kinetics overestimate
meso-segregation.

(3) C is more prone to macrosegregation than Mn. GMIC is
approximately 3 times that of GMIMn The segregation distri-
bution patterns of both elements are very similar.

To understand the above results, detailed analysis is made: first,
the effect of the diffusion kinetics on the formation of the mushy
zone and microsegregation (solute enrichment in the interdendrit-
ic melt) is examined; then, the effect of the mushy zone and micro-
segregation on the flow pattern is examined; and finally, the effect
of flow pattern on the macrosegregation is examined.

The calculations of Col-I, II and III were repeated by ‘‘switching
off’’ the flow, and key features of the mushy zone were analyzed
(Fig. 5). The major difference between Col-I and the other two
cases (Col-II and III) is the mushy zone thickness. Col-I has the
most extended mushy zone. For Col-I, at the lower solid fraction
region, growth of the columnar trunk in the radius direction is sup-
pressed by the finite diffusion, which leads to: (1) slowing down of
the rate of latent heat release, (2) slowing down of the solute
enrichment in the surrounding melt, (3) the growth of the colum-
nar primary dendrite tip is in favor, as observed in Fig. 5(b). The
temperature of the columnar primary dendrite tip is predicted to



(b) Col-II (c) Col-III (a) Col-I

Fig. 4. Comparison of cindex
i distributions in the as-cast state assuming different growth kinetics: (a) Col-I for diffusion-governed kinetics; (b) Col-II for Gulliver–Scheil; (c) Col-

III for the lever rule. The crystal morphology during solidification is purely columnar. The upper row is for C, and the bottom row is for Mn. The segregation patterns are
shown as a color scale, and the segregation variation ranges are given for each figure individually. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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be approximately 1 K below the equilibrium liquidus temperature
(1775.3 K for the ternary system Fe–0.45 wt.%C–1.06 wt.%Mn). In
contrast, for Col-II and III, due to the assumed full mixing of the
solute in the local volume element, the growth of the columnar
trunk in the radius direction is overestimated, and the growth of
the primary dendrite tip is underestimated. The temperature of
the columnar primary dendrite tip is predicted to be 5.3 K for
Col-II and 3.3 K for Col-III below the liquidus. As soon as the pri-
mary dendrite tip reaches a local volume element, a large amount
of the solid will form immediately, which leads to a ‘cut’ T–fc curve,
as observed in Fig. 5(c). This type of mushy zone has a strong effect
on the flow pattern and macrosegregation formation. Actually, the
(c‘;c � cc;C) curves in Fig. 5(d) do not show a large difference
between the three cases.

One may argue that tracking of the columnar primary dendrite
tip is not necessary with a model considering the infinite diffusion
kinetics (Col-II or III). Then, there would be no ‘cut’ T–fc curve
(Fig. 6), and a similar extended mushy zone to the case Col-I would
be predicted. However, this type of model is not useful for mixed
columnar–equiaxed solidification. A necessary feature of the mixed
columnar–equiaxed solidification model is to track the columnar
primary dendrite tip front to consider the competition between
growths of columnar and equiaxed phases.

The effect of the mushy zone and microsegregation on the flow
pattern and subsequently on the macrosegregation is analyzed in
Fig. 7. A comparison of the flow patterns (at the moment when
50% of the casting is solidified) of the three cases is made. The
interdendritic flow can only be observed in the mushy region
where the solid fraction is less than 30%. The flow in the extended
mushy zone of Col-I is relatively easier. The interdendritic melt
(solutal buoyancy dominant) is lighter and tends to rise, while in
front of the columnar tips, the flow (thermal buoyancy dominant)
remains downward. The flow direction near the columnar primary
dendrite tip front reverses. For Col-II and Col-III, the predicted
mushy region with a solid fraction of less than 30% is very narrow;
therefore, the interdendritic flow is confined in the narrow region,
and no upward flow in the mush is observed at this moment. The
magnitudes of the flow of the three cases are also quite different.
Note that the flow patterns change transiently, and even the
flow direction in the casting center reverses at the late stage of
solidification.

The effect of the flow on the macrosegregation formation is
described by Eq. (4). As demonstrated in the upper row of Fig. 7,
the evolution of macrosegregation, being quantified by @cmix;C=@t,
depends on the flow direction u

*

‘ in black vector) and the direction
of the liquid concentration gradient (rc‘;C in red vector). The two
vectors pointing in the same direction (angle less than 90�) lead
to a reduction of cmix;c, i.e., the formation of negative segregation;
conversely, the two vectors pointing in opposite directions lead
to an increase of cmix;c, i.e., the formation of positive segregation.

We predict that the global macrosegregation intensity increases
in the order of Col-II, Col-I, Col-III. The reason is as follows. As an
example, the result at the moment when 50% of the casting is
solidified, Fig. 7, shows that the positive and negative extremes
of @cmix;C=@t increase in the order of Col-I, Col-II, Col-III. This result
helps to explain why the most severe segregation occurs for Col-III.
However, we also see that the area to develop the macrosegrega-
tion for Col-I is much broader than those for the other two cases,
as observed in the upper row of Fig. 7. This finding explains why
Col-I has more intensive segregation than Col-II. Another feature
is that the area with non-zero of @cmix;C=@t is mainly distributed
in the front of the mushy zone with a solid fraction less than 0.3.
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Fig. 5. Effect of growth kinetics on the formation of mushy zone during pure columnar solidification. The calculations of Col-I, II and III are repeated by ‘‘switching off’’ the
flow; however, the columnar primary dendrite tip front is tracked using the LGK model [2,43,48]. The results are evaluated along a path A–A at the moment when 50% of the
entire casting domain is solidified: (a) global fc distribution (Col-I); (b) fc and T profiles along the path A–A; (c) T–fc curves; and (d) liquid–solid concentration difference
ðc‘;C � cc;CÞ as a function of fc.

Fig. 6. T–fc curves of Col-II and Col-III without tracking the columnar primary
dendrite tip. The columnar primary dendrite tip front is set to be the liquidus
isotherm.
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This area is very narrow for Col-II and Col-III, and the flow is rela-
tively unstable. The instability of flow in the front of the mushy
zone is the origin of meso-segregation.

4. Equiaxed solidification

4.1. Solidification sequence and evolution of macrosegregation

The solidification sequence and formation of macrosegregation
are shown in Fig. 8. Although the thermo-solutal convection and
crystal sedimentation are coupled, the crystal sedimentation and
induced flow dominate. As soon as the equiaxed phase appears,
the equiaxed sedimentation force dominates over other thermo-
solutal buoyancy Dq = 150 kg m�3, the solid phase is heavier than
the melt), as illustrated in Fig. 1. The flow and crystal sedimenta-
tion are unsymmetrical and unstable. The start of cooling at the
casting corner and surface stimulates the immediate nucleation
and growth of equiaxed crystals. The equiaxed grains sink down-
wards (Fig. 8(a.1) and (b.1)), dragging down the surrounding melt.
Thus, the melt in the bottom region moves inwards and then rises
up in the middle, providing space for the oncoming grains and
melt. Hence, two vortices form in the bulk. In turn, the melt flow
affects the motion of the crystals. The motion of the crystals
increases the fraction of solid fe in the base region and causes fe

to increase and extend the packing limit (0.637) near t = 16 s
(Fig. 8(b.3)) such that the motion of the crystals ceases. This phe-
nomenon is known as grain settlement or sedimentation. Grain
sedimentation affects the solid phase distribution. The fe isolines
in the lower part evidently proceed much faster than those in
the upper part, and notably, the fe isolines even protrude upwards
into the casting center. The upward melt flow at the casting center
tries to bring crystals upwards due to a drag force, while the crys-
tals themselves attempt to keep sinking downwards due to gravity.
Another effect of the melt flow on the motion of crystals can be
observed in the upper part of the casting, where the crystals near
the upper boundary do not sink directly. Instead, the crystals first
move toward (or diverge to) the upper corners (Fig. 8(b.1)–(b.4)),
then follow the main stream of the flow along the side walls,
and, finally, settle in the bottom region.



(a) Col-I (b) Col-II (c) Col-III

Fig. 7. Analysis of the macrosegregation formation during pure columnar solidification. Three growth kinetics are compared: (a) Col-I, (b) Col-II and (c) Col-III. The results are
evaluated at the moment when 50% of the entire casting domain is solidified. Upper row: calculated distribution of @cmix;C=@t, and the vector directions of u

*

‘ (in black) and
rc‘;C (in red) are shown in some marked regions. Middle row: distribution of cindex

mix;C and liquid velocity field. The fraction of solid (columnar) isolines are also shown. Low row:
distribution of fc and y-component of liquid velocity along the path A–A. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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In Fig. 8, different segregation zones are marked by the symbols
A through E. During equiaxed solidification, different segregation
zones develop and disappear dynamically. The final segregation
pattern is shown in Fig. 9(a).

With the dominance of crystal sedimentation in the macro-
scopic transport phenomena, the evolution of different segregation
zones during equiaxed solidification can be analyzed by [50,51]:

@cmix;i

@t
� ðc‘;i � ce;iÞr � ðfeu

*

eÞ: ð5Þ
or
@cindex

i

@t
� 100

c0;i
ðc‘;i � ce;iÞr � ðfe u

*

eÞ: ð6Þ

The positive segregation A and negative segregation B begin from
the lower bottom region. These segregations are caused by a separa-
tion of the solute-enriched melt (c‘;i > c0;i) from the solute-depleted
crystals (ce;i < c0;i), i.e., (c‘;i > ce;i > 0. Near the vertical center line,
the melt rises, while the crystals tend to sink and settle (pile up) at
the bottom. In the lower bottom region B, the equiaxed phase
accumulates, i.e.,r � ðfeu

*

eÞ 6 0, leading to the formation of negative
segregation. In region A,r � ðfeu

*

eÞP 0, positive segregation occurs.
The positive segregation region A is not stationary but moves
upwards with the flow. The negative segregation region B stays at
the bottom, becoming gradually extended, and thus, the segregation
intensifies as the sedimentation process continues. The negative
segregation regions C form by the same mechanism as region B;
however, these regions are mostly located in the bulk region, where
the volume fraction of the equiaxed phase remains smaller than the
packing limit (0.637). These regions are not stationary and move
with the flow. The positive segregation region D on the upper surface
is caused by crystals leaving this zone. The solute-depleted crystals
leave the region D, while the solute-enriched melt is left behind,
resulting in the positive segregation of region D. The crystals leaving
region D form a negative segregation zone E just below. The forma-
tion of the positive segregation region D and the negative segrega-
tion zone E can also be explained by Eq. (6). The motion of the
crystals in region E is strongly affected by the global flow pattern.
With time, this region will merge with region C, follow the flow
stream and form the final segregation pattern, as shown in
Fig. 9(a). The unsymmetrical distribution of macrosegregation is
caused by the flow instability.

An interesting finding is that the two elements C and Mn
behave differently in the formation of segregation, differing not
only in intensity but also in the distribution pattern. In
Fig. 8(c.1), the positive segregation region D near the top surface



(a.1) (b.1) (c.1) (d.1)

(a.2) (b.2) (c.2) (d.2)

(a.3) (b.3) (c.3) (d.3)

(a.4) (b.4) (c.4) (d.4)

Fig. 8. Solidification sequence and evolution of macrosegregation during equiaxed solidification. The results for the case Eqx-I are presented, and finite diffusion kinetics is
considered. u

*

‘ and u
*

e are shown in vectors, (a) and (b), overlaid with fe-isolines. The macrosegregation indices, cindex
C (c) and cindex

Mn (d), are shown in the isolines. The different
segregation regions are marked with the symbols A-E. fe, cindex

C and cindex
Mn are also shown in the color scales in addition to the isolines, with blue for the minimum (or negative

extreme), green for the middle value and red for the maximum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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and the negative segregation region E just below are visible for the
alloy element C; however, these regions cannot be observed for the
element Mn (Fig. 8(d.1)). We have analyzed the solidification path
of this casting in Part 1 (Section 3). Due to the large difference
between the two alloy elements (C and Mn) in terms of the diffu-
sion coefficients (D‘;C = 2 � 10�8, D‘;Mn = 4 � 10�9 m2 s�1) and sol-
ute partition coefficients (kC = 0.36, kMn = 0.75), the rate of solute
enrichment of C in the melt is much higher than that of Mn. At
the very initial stage, the cooling rate near the casting surface is
so high that ‘solute trapping’ occurs for the element Mn. Therefore,
no segregation of Mn in that region at the initial stage can be
observed.

The final segregation patterns of both elements exhibit some
similarities; however, the difference in the intensity is large



(a) (b) (c)

Fig. 9. Comparison of cindex
i distributions in the as-cast state by assuming different growth kinetics: (a) Eqx-I for diffusion-governed kinetics; (b) Eqx-II for Gulliver–Scheil;

and (c) Eqx-III for the lever rule. The crystal morphology during solidification is purely equiaxed. The upper row is for C, and the bottom row is for Mn. The segregation
patterns are shown in the color scale, and the segregation variation ranges are given for each figure individually. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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(Fig. 9(a)): the C segregation index falls in the range of �13.8 to
43%, while the Mn segregation index is in the range of �1.64 to
1.97%. The segregation range of C in the as-cast state is 15.7 times
larger than that of Mn.

4.2. Effect of diffusion kinetics

To investigate the effect of diffusion kinetics on the formation of
macrosegregation, calculations of three different cases are com-
pared, as shown in Fig. 9. Eqx-II and Eqx-III are calculated to repre-
sent the solidification processes following the lever rule and
Gulliver–Scheil assumptions. The distribution range of the local
macrosegregation index (from cindex

i;min to cindex
i;max and the global macro-

segregation intensity (GMIi) for each element and each case are
summarized in Table 1.

(1) As the global flow/sedimentation patterns of cases Eqx-II
and Eqx-III are quite similar to that of Eqx-I, the macrosegre-
gation patterns of the 3 cases exhibit some similarities.
However, large differences in segregation intensity were
observed. Both the (cindex

i distribution range cindex
i;max � cindex

i;min

and GMIi increase significantly in the order of Eqx-I, Eqx-II,
Eqx-III. Calculations based on Gulliver–Scheil or the lever
rule dramatically overestimate macrosegregation. Gulliver-
Scheil overestimates GMIC and GMIMn by 1.44 and 9.3 times,
respectively, while the lever rule overestimates GMIC and
GMIMn by 1.92 and 10.7 times, respectively.

(2) C is more prone to macrosegregation than Mn. GMIC is
approximately 3 times that of GMIMn for Eqx-II and Eqx-III,
while GMIc is approximately 12 times that of GMIMn for
Eqx-I.
Similar analysis as in Section 3.2 was performed. Additional cal-
culations for Eqx-I, II and III were performed by ‘‘switching off’’ the
flow. The key features of the two-phase region are shown in Fig. 10.
In the low fraction solid region, all three cases show similar phase
distributions (Fig. 10(b)); Eqx-I solidifies at a relatively lower tem-
perature (Fig. 10(c)); and the (c‘;C � ce;C) of Eqx-I is predicted to be
slightly smaller (Fig. 10(d)) than the other two cases. In the high
fraction solid region, the phase distribution of Eqx-I is quite similar
to that of Eqx-II but quite different from that of Eqx-III (Fig. 10(b));
the curves of (c‘;C � ce;C) among the three cases are different from
each other.

It remains difficult, only based on the result of Fig. 10, to explain
the observed difference in macrosegregation among the three
cases (Fig. 9) when flow and crystal sedimentation are considered.
The solidification behavior in the high fraction solid region plays an
ignorable role in the formation of macrosegregation, although
some large difference in the solid fraction between Eqx-III and
the other two cases is observed because flow/sedimentation would
stop in this region. The minor difference in (c‘;C � ce;C) among the
three cases in the low fraction solid region would to some extent
affect the calculation of macrosegregation but appears insufficient
to explain the observed difference in macrosegregation of Fig. 9.
Therefore, further analysis based on the flow/sedimentation is per-
formed below.

Detailed analysis of the distributions of (c‘;C � ce;C)r � ðfeu
*

eÞ and
@cmix;C=@t is shown in Fig. 11. For all three cases, @cmix;C=@t exhibits
almost the same distribution pattern as r � ðfe u

*

eÞ. This finding
hints that flow/sedimentation plays a more important role in the
formation of macrosegregation. The sign ofr � ðfe u

*

eÞ is an indicator
for the local solid phase accumulation/depletion by transport of
equiaxed crystals. The extreme values (the distribution range given
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Fig. 10. Effect of growth kinetics on the two-phase region during pure equiaxed solidification. The calculations of Eqx-I, II and III are repeated by ‘‘switching off’’ the flow. The
results are evaluated at the moment when 50% of the entire casting domain is solidified. (a) fe distribution for Eqx-I. (b) fe and T profiles along the path A–A as marked in a. (c)
T–fe curves. (d) Carbon concentration difference between the inter-granular melt and equiaxed phase ðc‘;C � ce;CÞ as a function of fe.
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in the figures) of @cmix;C=@t indicate that the evolution rate of mac-
rosegregation increases in the order of Eqx-I, Eqx-II and Eqx-III.

One may argue that Fig. 11 only shows the result at the moment
when 25% of the casting domain is solidified and that it is not suf-
ficient to explain the final macrosegregation, which is the result of
dynamics of the entire solidification and sedimentation processes.
Therefore, a statistical study on the history of GMIC and the
domain-averaged quantities (c‘;C � ce;C) and j @cmix;C=@t j was per-
formed, and the results are plotted against the domain-averaged
solid fraction (Fig. 12). The change of GMIC during solidification fol-
lows the trend of j @cmix;C=@t j Both GMIC and the domain-averaged
j @cmix;C=@t j of Eqx-I are smaller than those of the other two cases.
This finding means that a case considering finite diffusion kinetics
is less prone to macrosegregation. Comparing Eqx-II and Eqx-III,
we observe that GMIC and the domain-averaged j @cmix;C=@t j cross
each other at the moment when the casting is approximately 30%
solidified. More severe segregation is predicted for Eqx-III (lever
rule) than for Eqx-II (Gulliver–Scheil), although the domain-aver-
aged (c‘;c � Ce;C) curve of Eqx-II is always higher than that of Eqx-
III. This result is due to the dominant contribution of r � ðfe u

*

eÞ.
With the current benchmark configuration, the sedimentation phe-
nomenon of Eqx-III is predicted to be more severe than the other
two cases at the late stage of solidification.

5. Mixed columnar–equiaxed solidification

The modeling result indicates that the selected Fe–C–Mn
alloy tends to solidify in a dominantly columnar or mixed
columnar–equiaxed structure in the current benchmark of small
dimension. The appearance of a columnar structure has a strong
effect (resistance) on the flow and, hence, on the formation of mac-
rosegregation. The solidification sequence and the formation of
macrosegregation are shown in Fig. 13. Both the columnar and
equiaxed phases grow and compete with each other. The equiaxed
grains sink from the top surface and along the two side walls, while
the columnar phase develops almost equally from all four walls.
The melt is dragged downwards by the sinking equiaxed grains,
which further induces an upward flow of the melt in the middle
of the casting. Two symmetrical convection rolls form. The
contribution of thermal and solute buoyancy to the global flow is
relatively small. The casting condition favors the growth of the
columnar structure. As no sufficient equiaxed phase appears ahead
of the columnar front to block the growth of the primary dendrite
tips of the columnar trunks, the columnar tip fronts finally meet in
the casting center. No columnar-to-equiaxed transition (CET) is
predicted. The final as-cast structure contains a dominant colum-
nar phase with only 2–15% of the equiaxed phase being captured
by the columnar trunks.

If we compare the case of mixed columnar–equiaxed solidifica-
tion (Mix-I) with that of pure equiaxed solidification (Eqx-I), the
appearance of a columnar structure reduces the liquid and equi-
axed velocities by one order of magnitude. If we compare the case
of Mix-I with that of Col-I, the melt flow of Mix-I is stronger than
that of Col-I; however, their velocities are of the same magnitude.
The macrosegregation in the case Mix-I is predicted to be much
less severe than that of Eqx-I but is of course stronger than that
of Col-I. The difference among the cases Col-I, Eqx-I and Mix-I
can be observed not only by the severity but also by the distribu-
tion pattern. The evolution of the different segregation zones, A
through E, for the case of Mix-I is also shown in Fig. 13(c).



(a) Eqx-I (b) Eqx-II (c) Eqx-III

Fig. 11. Analysis of the macrosegregation formation during pure equiaxed solidification by different growth kinetics: (a) Eqx-I, (b) Eqx-II and (c) Eqx-III. The results are
evaluated at the moment when 25% of the entire casting domain is solidified. Upper row: distribution of liquid–solid carbon concentration difference ðc‘;C � ce;CÞ. Middle row:
distribution of r � ðfe u

*

eÞ. Low row: the distribution of @cmix;C=@t. fe-isolines are also shown.
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A detailed analysis of the macrosegregation mechanisms for mixed
columnar–equiaxed solidification is beyond the scope of the
current paper. Readers can refer to previous publications of the
authors [43,44,50].

6. Solidification of an industry ingot

Segregation in a 2.45-ton ingot was reported in [52]. The nom-
inal composition1 of the ingot was Fe–0.41 wt.% C–1.06 wt.%Mn–
0.48 wt.%Si–0.056 wt.%S–0.052 wt.%P. Here, only a ternary system,
namely two alloy elements (C and Mn), is considered. The sulfur
print and the measured segregation of C and Mn are shown in
Fig. 14(a)–(c). The segregation maps are reproduced by interpolation
of the original chemical analyses of 53 drilling samples out of the
ingot section. The segregation maps of both elements, C and Mn, look
similar in most parts of the section but differ in the hot top region.
An overall negative segregation (except for two points) along the
centerline is observed, while in the hot top region, a large positive
segregation of C is observed. The sulfur print (Fig. 14(a)) shows a dis-
continuous segregation pattern (broken lines) in the middle radius
region between the outer surface and the central axis of the ingot.
This zone corresponds to a slightly positive segregation, as becomes
evident from the segregation maps (Fig. 14(b) and (c)). Configuration
of this ingot for the simulation together with necessary boundary
1 The nominal carbon concentration is 0.41 wt.%; however, the post-mortem
chemical analyses of the drilling samples indicate an averaged carbon concentration
over the whole ingot of 0.45 wt.%. Therefore, the simulation is performed with an
initial carbon concentration of 0.45 wt.%.
and initial conditions are described in Fig. 14(d). More details about
the process parameters can be found elsewhere [53,54]. The ingot
had a square cross-section and was cast in a chilled mold; however,
a 2D-axis symmetrical simulation was performed to approximate
the solidification behavior in the square section ingot. The predicted
solidification sequence is shown in Fig. 15, and the segregation map
is shown in Fig. 16(a) and (b). The same material data as the previous
benchmark (Table 2) are used.

First, the flow during solidification is unstable (Fig. 15). The
melt flow in the bulk region ahead of the columnar dendrite tip
front is driven by three mechanisms: (i) solutal buoyancy driving
upwards, (ii) thermal buoyancy driving downwards, and (iii) equi-
axed sedimentation, which drags the surrounding melt down-
wards. The two downward driving forces dominate, and the melt
flows downwards along the columnar dendrite tip front. This
downward flow along the columnar tips forces the melt to rise in
the ingot center. This rising melt interacts with the falling equiaxed
crystals and with the downward flow near the columnar tip front
to form many local convection cells. These convection cells are
developed or suppressed dynamically; thus, the flow direction in
the cells changes with time. The sinking of the equiaxed crystals
in front of the columnar dendrite tips leads to an accumulation
of the equiaxed phase in the base region of the ingot. These accu-
mulated equiaxed crystals in the base region block the growth of
the columnar dendrite tips, i.e., CET occurs, finally causing the for-
mation of a characteristic cone-shaped distribution of the equiaxed
zone. Correspondingly, relatively strong negative segregation for
both elements C and Mn is predicted in the low-bottom equiaxed
zone (Fig. 16(a) and (b)). With the sedimentation of a large number
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of equiaxed crystals, the solute-enriched melt is pushed upwards
in the casting center, causing a positive segregation in the upper
region.

Second, a streak-like segregation (Fig. 16(a) and (b)) in the mid-
dle radius zone between the outer surface and the central axis of
the ingot is predicted. The following tentative hypothesis concern-
ing this streak-like segregation is proposed: as the equiaxed crys-
tals can be captured (crystal entrapment) by the growing
columnar trunks, the entrapment of the equiaxed crystals will lead
to a heterogeneous phase distribution between the columnar and
equiaxed crystals behind the columnar tip front, which can be
observed in Fig. 15(b)–(d). The resistance to the interdendritic flow
by the columnar trunks and the entrapped equiaxed crystals is dif-
ferent. Therefore, the flow direction of the melt in this region is
slightly diverted by the heterogeneous phase distribution. As the
formation of macrosegregation is extremely sensitive to the inter-
dendritic flow, it is not surprising that the induced macrosegrega-
tion (Fig. 16(a) and (b)) assumes the similar streak-like pattern of
the phase distribution (Fig. 15(d)).

One may notice that the predicted streak-like segregation zone
appears to coincide with the discontinuous segregation (broken
lines) zone in the middle radius zone between the outer surface
and the central axis of the ingot, as indicated by the sulfur print
(Fig. 14(a)). This discontinuous segregation is suspected to be the
channel segregation, namely, an A-segregation (or A-segregates).
However, based on the current numerical simulation, it remains
unclear whether the classical A-segregation is the same as or orig-
inates from the streak-like segregation. According to the most
widely accepted empirical explanation, an A-segregation originates
and develops in the columnar dendritic mushy zone and is accom-
panied by remelting. A recent study by the authors [55,56] in a Sn–
Pb laboratory casting has shown that channel segregation can orig-
inate and develop during pure columnar solidification, where no
equiaxed crystals exist. Therefore, we have named the streak-like
segregation here a quasi-A-segregation. To form this quasi-A-seg-
regation, the sedimentation of equiaxed crystals and its interaction
with the columnar tip front and melt flow appear to play an impor-
tant part. More details about the formation mechanism for this
type of quasi-A-segregation can be found elsewhere [54].

The predicted segregation along the ingot centerline is com-
pared with the experimental result in Fig. 16(c) and (d). Some
agreements are achieved; however, the quantitative discrepancy
remains significant. Both simulations and experiments show a neg-
ative segregation along the centerline in the lower and middle
parts for both elements C and Mn. The predicted negative segrega-
tion in the base region is much stronger than the experimental one
for both elements C and Mn, which means that the simulation
overestimates the negative segregation in the base region. This
negative segregation is caused by the crystal sedimentation. In
the hot top region, both experiments and simulations show posi-
tive segregation of C; however, the positions are different. The sim-
ulation predicts a positive segregation of Mn in the hot top region,
while the experiment shows only two points with slightly positive
segregation in the upper part of the centerline, and thus, the pre-
dicted and experimentally observed positions of the positive segre-
gation are not in agreement.

The quantitative discrepancy above arises due to the following
two factors. One factor is the model assumptions. As observed in
[53,54], the assumption of globular equiaxed morphology can
overestimate the sedimentation-induced negative segregation.
Conventional steel would mostly solidify with dendritic morphol-
ogy. In addition, the uncertainty about the nucleation parameters
for the origin of equiaxed crystals might also cause errors in the
calculation of macrosegregation. Moreover, the solidification
shrinkage, mechanical deformation and turbulence of the flow
are not treated. The second factor concerns the assumed process
parameters and mainly the thermal boundary conditions. The heat
transfer coefficient used for the hot top region (10 W m�2 K�1)
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Fig. 13. Solidification sequence and evolution of macrosegregation during mixed columnar–equiaxed solidification. The results are presented for the case Mix-I, and finite
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could be too small. The position of the predicted hot spot of this
ingot appears too high compared with the one observed experi-
mentally. However, we do not adjust the process parameters to
cater to the experimental results in this study.

7. Discussion

7.1. Importance of finite diffusion kinetics in the formation of
macrosegregation

Due to finite diffusion, the liquid average concentration is dif-
ferent from the thermodynamic equilibrium concentration, i.e.
c‘;i – c�‘;i. The deviation of c‘;i from c�‘;i, depending on the cooling
rate and diffusion length, is most significant at the initial stage of
solidification [1]. At this stage, the crystal is mostly globular (equi-
axed) or cellular (columnar), and the solute field around the crystal
does not impinge on those of other neighboring crystals. The melt
of concentration c‘;i, not c�‘;i, is transported and governs the forma-
tion of macrosegregation. The flow in the inter-columnar or inter-
granular space is easier, and it is precisely at this early stage of
solidification that the melt cannot be treated as infinite mixing.
Therefore, a proper treatment of the diffusion kinetics of the liquid
phase becomes critical for the calculation of macrosegregation. It is
understandable that the assumption of c‘;i ¼ c�‘;i, imposed by the
infinite mixing models (Gulliver–Scheil or lever rule), would lead
to error estimation of macrosegregation.



Fig. 14. Configuration of a 2.45-ton industry ingot (Fe–0.45 wt.%C–1.06 wt.%Mn). (a)–(c) Experimental results in accordance with [52] and (d) simulation setup. The reported
macrosegregation is indicated by the segregation index 100� (cmix,i�co,i)/co,i in grayscale.
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One may argue that the infinite mixing does give a reasonable
approximation at the late stage of solidification. However, the flow
can be ignored at the late stage and almost stops at a solid fraction
of approximately 0.3 for columnar solidification (Fig. 3(a)) or at
approximately 0.5 for equiaxed solidification (Fig. 8(a)). The resis-
tance of the columnar crystals to the flow is proportional to f 2

c =f‘
[43], and the drag force of the settling equiaxed crystals to the sur-
rounding melt is proportional to f 4=3

e =f‘ [29]. This result means that
the (treatment of) solute enrichment in the interdendritic melt in
the late stage of solidification does not significantly affect the cal-
culation of the macrosegregation.

Another important point worth mentioning here is the invalid-
ity of the infinite mixing models for calculation of the mixed
columnar–equiaxed solidification and the columnar-to-equiaxed
transition. A necessary feature of the mixed columnar–equiaxed
solidification model is to consider the competition between the
growth of the columnar primary dendrite tips and the equiaxed
crystals ahead. As shown in Fig. 5, if the columnar primary dendrite
tip front is tracked, for example, using the LGK model [2,43,48], in
combination with the infinite mixing growth kinetics (Gulliver–
Scheil or lever rule), a ‘cut’ T–fc curve and a narrow mushy zone
are predicted, especially in the region between fc = 0 and 0.3, where
interdendritic flow is relatively easier. This phenomenon will sig-
nificantly affect the flow pattern in the columnar primary dendrite
tip region and consequently affect the result of macrosegregation.

During columnar or mixed columnar–equiaxed solidification,
meso-segregation (channel segregation) might occur; however,
the imposed infinite mixing in the liquid phase by Gulliver–Scheil
or the lever rule leads to an overestimation of the meso-segrega-
tion. The reason has been discussed by Zaloznik and Combeau
[30]. Consideration of finite diffusion in the liquid phase indicates
stabilization of the growth of the mushy zone. Due to this
increased stability, the sensitivity of the phase-change to local sol-
utal and flow perturbations is decreased, which inhibits the devel-
opment of channels and thus the formation of meso-segregation.
Similar analyses, which were performed previously by the authors
[53–56], will not be repeated here.

C in both the liquid and solid has a larger diffusion coefficient
than Mn. The current model shows that, independent from the
assumed crystal morphology (columnar, equiaxed, or mixed
columnar-equiaxed solidification), C is more prone to macrosegre-
gation. We find that it is the partition coefficient (kC = 0.36,
kMn = 0.75) together with the relative velocity between the liquid
and solid that govern the formation of macrosegregation. The dif-
fusion coefficients can only level out the difference between aver-
age and equilibrium concentrations in each phase. The difference
between concentrations of liquid and solid is mainly governed by
the partition coefficients and is less affected by the diffusion coef-
ficients. Additionally, we have considered two possible partition
mechanisms at the liquid solid interface: the equilibrium mecha-
nism and the non-equilibrium mechanism with solute trapping.
The liquid diffusion coefficient of Mn is 1/5 that of C. The solute-
trapping phenomenon is predicted for Mn at the initial stage of
high cooling rate near the casting surface region. For C, no solute
trapping occurs (only equilibrium partition). This modeling result
hints that the low diffusive element increases the possibility of
solute trapping.

Some uncertain points regarding the calculation of the diffusion
length need to be improved in the future: (i) the effect of a moving
liquid–solid interface, (ii) the transient behavior of growth, and (iii)
the effect of flow. We have described in Part 1 [1] that the diffusion
lengths are estimated based on the analytical solution of diffusion
fields around and inside a stationary sphere or cylinder, which
might have overestimated the diffusion length or overestimated
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Fig. 17. Sensitivity of the predicted macrosegregation pattern to the mesh size (2.5, 1.25 and 0.65 mm). Three pure columnar solidification cases considering different
diffusion kinetics are compared. Only the segregation of C is evaluated. The local macrosegregation index distribution range ðcindex

C;min � cindex
C;maxÞ and the global macrosegregation

intensity (GMIc) are labeled in each calculation.
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the possibility of solute trapping. For point (i), a possible improve-
ment of the diffusion length by accounting for the motion of a
growing liquid–solid interface can be performed [33]. For point
(ii), a numerical solution of the transient diffusion field in and
around the growing liquid–solid interface can be used to calculate
the varying diffusion length [57]. However, both of the above
improvements would lead to a high calculation cost, as a numerical
integration or solution of the local diffusion field in and around the
growing crystal must be performed on the base of each computa-
tional volume element, iteration and time step. For point (iii) a
modification to the diffusion length due to flow can be performed
by introducing a Sherwood number (the diffusion length is related
to the grain size, Reynolds and Schmidt numbers) [58]. The Sher-
wood number determined experimentally based on an organic
material must be further validated for a metallic alloy.

7.2. Mesh sensitivity

Mesh size is an important factor that affects the accuracy of
macrosegregation calculations. The model was implemented in
commercial software, ANSYS Fluent [43,59]. The calculation
accuracy is controlled by the residual, which is the sum of the
imbalance in the discretized conservation equations over all cells,P
cells; P j

P
nbanb/nb þ b� aP/P j, normalized by a scaling factor,P

cells; P j aP/P j. Here, /P and /nb are values of a general variable
/ at a cell P and neighbor cells nb, aP is the center coefficient, anb

represent the effect coefficients for the neighboring cells, and b is
the contribution of the constant part of the source term.
Convergence criteria were strictly controlled: the normalized
residuals for continuity, momentum, volume fraction, species
transport and user-defined scalar equations were set to 10�4, and
for enthalpy conservation equations, the residuals were set to
10�7. To fulfill the above criteria, the time step had to be set as
small as 10�4 s for some cases of fine grid, and the maximum iter-
ations per time step was set to 60.

Mesh sensitivity was studied for the 2D square casting (Figs. 17
and 18). For the pure columnar solidification, the sensibility of the
calculation results to the mesh size also depends on the assumed
diffusion kinetics (Fig. 17). With finite diffusion kinetics (Col-I),
the global macrosegregation pattern does not change so much
when the mesh size is smaller than 1.25 mm; however, the segre-
gation strength is still not convergent with a grid size of 0.65 mm.
Here, the segregation strength is evaluated by the GMIC and the
positive and negative segregation extremes (cindex

C;min). With the



Fig. 18. Sensitivity of the predicted macrosegregation pattern to the mesh size (2.5, 1.25 and 0.65 mm). Three pure equiaxed solidification cases considering different
diffusion kinetics are compared. Only the segregation of C is evaluated. The local macrosegregation index distribution range ðcindex

C;min � cindex
C;maxÞ and the global macrosegregation

intensity (GMIc) are labeled in each calculation.
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infinite liquid mixing kinetics (Col-II and Col-III), both the global
macrosegregation pattern and the segregation strength are extre-
mely sensitive to the grid size. Meso-segregation (channel segrega-
tion) is predicted with a grid size smaller than 1.25 mm, while no
such pattern is observed with a coarse grid (2.5 mm). To conclude
this discussion, the model with the assumption of infinite liquid
mixing is more sensitive to the grid resolution than the model con-
sidering finite diffusion kinetics for similar reasons to those dis-
cussed in Section 7.1. The assumption of infinite liquid mixing
leads to an overestimation of meso-segregation; however, this
meso-segregation cannot be properly resolved with a coarse grid
(2.5 mm).

For pure equiaxed solidification, as the velocity of the flow/
sedimentation is one order of magnitude larger than that for
the cases of pure columnar solidification, the modeling result
shows much more sensitivity to the mesh size. Even if the finite
diffusion kinetics is considered, the segregation pattern and the
segregation strength are not fully convergent. As shown in
Fig. 18, none of the 3 cases (Eqx-I, Eqx-II, Eqx-III) is convergent
with a grid size of 0.65 mm. Calculations with finer grids demand
even smaller time steps, and each calculation would require a few
weeks, which currently prohibits a systematic study. Therefore,
care must be taken to interpret the results of Section 4 (pure
equiaxed solidification), and the result can only lead to a qualita-
tive conclusion.

A mesh sensitivity study of a 2.45-ton ingot casting with mixed
columnar–equiaxed solidification was also made and presented
elsewhere [54]. It was observed that a very fine grid was required
to predict the details of quasi A-segregation (or A-segregates). A
grid-independent result regarding the fine details of quasi
A-segregation in such ingots is not attainable based on current cal-
culations. However, the global segregation pattern, e.g., the posi-
tive segregation extreme, negative segregation extreme, and their
locations, can be obtained using a relatively coarse grid (10 mm).

8. Conclusions

Simulations of a 2D square casting of a ternary alloy
(Fe–0.45 wt.%–1.06 wt.%Mn) with flow and crystal sedimentation
were performed. The importance of the proper handling of the
finite diffusion kinetics in the calculation of macrosegregation
was investigated.

(1) By comparing different diffusion kinetics, we observed that
the infinite mixing kinetics as assumed by the classical solid-
ification model, e.g., Gulliver–Scheil or the lever rule, which
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cannot properly consider the solute enrichment in the
interdendritic or inter-granular melt at the early stage of
solidification, might lead to an erroneous estimation of
macrosegregation.

(2) Crystal morphology is an important factor affecting the for-
mation of macrosegregation. Pure equiaxed solidification
leads to much more severe segregation than pure columnar
solidification. The difference is large: the former case would
produce one order of magnitude more severe segregation
than the latter case. During mixed columnar–equiaxed solid-
ification, the appearance of a columnar structure signifi-
cantly reduces the flow and crystal sedimentation, hence
reducing the macrosegregation.

(3) Both Gulliver–Scheil and the lever rule overestimate meso-
segregation, i.e., the channel segregation. This statement
requires further experimental verification; however, the
same conclusion was drawn by Zaloznik and Combeau based
on their numerical study [30].

(4) Mesh size is an important factor affecting the calculation
accuracy of macrosegregation. However, the issue of mesh
sensitivity also depends on diffusion kinetics. If finite diffu-
sion kinetics applies, a grid-independent result is easier to
obtain. If infinite diffusion kinetics applies, the modeling
result is more sensitive to the grid resolution. It must be sta-
ted that although quantitative parameter studies have been
performed, conclusions can only be drawn qualitatively, as
the calculations of some cases are not fully convergent with
the finest grid (0.65 mm) used in this paper.

Summarizing the modeling results of this two-part investiga-
tion (Part-1 and Part-2), the model that accounts for finite diffusion
kinetics is highly recommended for the calculation of both micro-
and macrosegregation.

The simulation of macrosegregation in an engineering steel
ingot of 2.45 tons is illustrated, and the simulation results are com-
pared with experimental results. The key features of the macroseg-
regation in this ingot were verified to be numerically reproducible;
however, the quantitative discrepancy remains large. Further
investigations are suggested: first, to continue the model evalua-
tion with engineering ingots with more reliable process conditions
and parameters and, second, to enhance the model capacity by
considering an improved model for diffusion lengths and dendritic
morphology.
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