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Abstract 

Usually during solidification of alloys solute is redistributed at the solid/liquid interface. For high solidification velocities a 
deviation from local thermodynamic equilibrium at the interface reduces the tendency for redistribution. This effect is known 
as solute trapping. Based on the model for binary systems presented in M.J. Aziz, T. Kaplan [Acta Metall. 36 (1988) 2335], 
we have developed a theory for multi-componental solute trapping. It enables the determination of the n solid concentrations 
by solving an n-dimensional nonlinear system of equations, called first response-functions. In addition we derived a relation 
between the growth velocity and the driving force for crystallisation for both planar and non-planar solid/liquid interfaces, 
called second response-function. Our model shows that the usual concept to calculate the interface temperature by reducing 
the actual "interface liquidus temperature" by a curvature and a kinetic undercooling term cannot be applied with non-dilute 
binary and arbitrary multi-componental alloys. © 1998 Elsevier Science B.V, 

1. Introduction 

To describe the interface motion during phase transformation, shape interface models assume that: (i) long range 

transport of  atoms (or molecules) and heat towards and/or away from the interface occurs, and (ii) an "interface 

reaction" takes place, which is responsible for the incorporation of atoms (or molecules) into the growing solid. The 

long range heat and mass transport can be described by the differential equations of  classical continuum mechanics. 

The "interface reaction" is formally described by response-functions and is still subject of  on-going research. 

To move a solid/liquid interface, a driving force and therefore a deviation from thermodynamic equilibrium must 

be present at the interface. This deviation from equilibrium is discussed in the rate theory [1,2,3]. For pure materials 

an undercooling at the interface drives the interface movement. With alloys the different solubility of  solute in liquid 

and solid results in a redistribution at the interface. Here the deviation from equilibrium produces concentrations at 

the interface which are variant to the phase diagram prediction. 
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On atomic scale, the redistribution at the interface can be regarded as taking place by hopping processes across 
the interface. Due to rate theory this produces a relation between the growth velocity V, the interface temperature 
T, and the concentration in liquid CL and solid Cs as 

Cs = fl(T, V, CL, Cs). (1) 

This relation is called first response-function [4,5]. For small growth velocity, where the interface is at thermodynamic 
equilibrium, the first response-function can be expressed by the distribution coefficient of the system as Cs -- 

k(T) • CL. 
With increasing growth velocity a deviation from thermodynamic equilibrium increases (for k < 1) or decreases 

(for k > 1) the solute content in the solid, a phenomenon which is known as solute trapping. For given interface 
temperature and liquid concentration, solute trapping can be described by a velocity-dependent distribution coeffi- 
cient kv (T). The model of Baker gave the basic ideas for a quantitative description of kv (T) [5,6]. Jackson et al. 
[7] suggest a model, wherein k increases with V, but it does not predict a total solute trapping (k ---- 1). This was 
first described theoretically by the continuous growth model (CGM) of Aziz [8]. With dilute alloys his model gives 

k(T) + (V/VD) 
kv ( T )  = , (2 )  

1 + (V/VD) 

where VD is the diffusion velocity across the interface, which is often approximated by VD = DL/3i. Here 3i is the 
"thickness" of the interface and DL the diffusion coefficient in the liquid. The validity of Eq. (2) was tested in many 
studies and proved, especially for slidely doped Si-alloys, to be correct [9,10,11]. 

In addition to the above mentioned model of Baker [5], Hillert and Sundman [12], J6nsson and Agren [13,14], 
and Aziz and Kaplan [4] developed further models for describing solute trapping in non-dilute binary alloy systems. 
Recent investigations on rapid solidification of Si-9at% As showed that Baker, Hillert-Sundman and Aziz-Kaplan 
models can correctly predict the experimental k-V relation. However, the measured T-V relation can only be 
adequately described by the Aziz-Kaplan model [15,16]. In their model the following expression is derived: 

K~ + (V/VD) 
kv (T, V) = (3) 

1 -[- ( V / V D )  - ( l  - K 'e )C L 

with the so-called partitioning parameter tee := exp[(A/2 2 - A~tl)/RT]. For the definition of the redistribution 
potentials A/21 and A/22 see Eq. (16). In dilute binary systems it is Xe ~ k. In this case the third term in the 
denominator is small compared to one and can thus be ignored. Therefore Eq. (2) is an approximation of Eq. (3). 

As the rate theory describes not only individual hopping processes, but also the sum of rates of atoms incorporated 
in the growing solid (and hence the motion of the interface), it yields a relation between growth velocity and driving 
force, i.e. the difference of free energy between liquid and solid at the interface. This relation is called the second 
response-function [4,5]. If this difference in free energy is expressed by the concentration in liquid and solid at the 
interface, the second response-function can be expressed as 

V = f2(T, CL, Cs). (4) 

For dilute binary systems Boettinger and Corriell derived the following expression for the second response-function 

[171: 

m V 
T -= Tf + mvCL + (1 -- k~ VO' (5) 

with 

( k - k v ( 1 - ~ ( k v / k ) )  
m v : = m .  1 +  1---- " 
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Here m = m (T) is the slope of the (equilibrium) liquidus line, Tf is the melting point of the pure solvent and V0 is 

the maximum possible growth rate. my is sometimes called the "kinetic liquidus slope". With pure materials Eq. (5) 

together with the Van't Hoff rule [18] gives 

(Tu - T) = V/ t t  with # := - A H f V o / ( R T 2 ) .  (6) 

Thus the expression derived by Boettinger and Corriell includes the linear approximation for the growth kinetics of 

pure substances. 
In this paper we present a theoretical model for the first and the second response-functions in the general case 

of a multi-componental alloy system. Based on the continuous growth model of Aziz and Kaplan [4], we have 

derived the n first response-functions for an n-componental system in Section 2.1. The second response-function 
for an n-componental system is given for a flat solid/liquid interface in Section 2.2 and for a curved interface in 

Section 2.3. Our theoretical investigation showed that for non-dilute binary and any arbitrary multi-componental 

system it is essentially not possible to derive an analytical expression for the T - V  relation. Thus the expressions 

for kinetic and capillary undercooling, which are known for dilute binary alloys, are not applicable in these more 

general cases. In Section 3 we apply the present model for (i) the movement of the solid/liquid interface for different 

velocities and to (ii) a spherical crystal with different stationary sizes within the melt (V = 0). In Section 4 the 
main results of the present work are summarised. 

2. Rate theory in multi-componental systems 

2.1. First response-functions 

We consider an n-componental system with a flat solid/liquid interface which grows with a constant velocity V at 

a temperature T. For the sake of simplicity we assume that all componentals have the same atomic volume, ;2, both 

in solid state and in liquid state. We denote the concentration (in mole fraction) as (C~, . . . ,  C~) for the solid (S) at 

the interface and (C~ . . . . .  C~) for the liquid (L) at the interface. Then the number of atoms of the ith component 
per unit area and unit time incorporated into the solid is given as 

j i  = c~s . v / s ? .  (7) 

j i  is the physical flux of atoms of the ith component across the interface measured in a frame of reference fixed 

with the interface. With Cs 1 + .  • • 4- C~ = 1, the total number of atoms per unit area and unit time incorporated into 

the solid, Jc := j l  4- . . .  4- jn,  the so-called crystallisation flux, is simply given as 

Jc = V / n .  (8) 

For a co-ordinate system fixed on the lattice of the crystal the so-called diffusive flux J~ is given as the difference 

between the actual flux j i  and the flux on growth of the solid with the composition of the liquid at the interface. 
Thus it is determined by 

JD := C~ . V / f 2  - j i  = (C~ - Cis) . V / f 2 .  (9) 

Note that with CI1 4 - - . .  4- C~ = 1 and C 1 4 - . . .  4- C~ = 1 the sum of the diffusive fluxes JD:---- J~ 4 - " "  4- JI~ 
vanishes. The diffusive flux J~ describes the number of atoms of the ith component per unit area and unit time 
which are rejected from the interface due to the different solubility between solid and liquid. Phenomenologically, 
this rejection is carried by redistribution processes between the ith and the j th  component, where j = 1 . . . . .  n and 
i ~ j .  
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Fig. 1. Reaction co-ordinate diagram for the redistribution reaction i +-> j. Initial state: i in the liquid and j in the solid. Final state: i in 
the solid and j in the liquid (according to [41). 

Fig. 1 illustrates the redistribution process in the free enthalpy/reaction co-ordinate diagram. Here we have defined 

the initial stage of the redistribution process i +-~ j by 
- ith component in the liquid, 

- j th  component in the solid, 
and the final state by the corresponding change of places. For the reaction to occur, the activation barrier for 

interdiffusion across the interface QD has to be overcome. According to the kinetic rate theory, the diffusive flux 

caused by the redistribution process i ~ j is given as the difference between the forward [i : (L) --+ (S), j : (S) 

(L)] and the backward [i : (S) --+ (L), j : (L) -+ (S)] reaction 

J ; J  : =  J ; L  - u o )  

The forward reaction is given as [4] 

I2 CL C s e x p  - ~  , 

where f is a geometrical factor, v is an attempt frequency, 2 6 an interatomic distance and R the gas constant. It 

is assumed that f ,  v and 3 are equal for the different redistribution processes. The activation barrier QD depends 

on the energetic situation locally at the interface and is therefore affected by all components present. Thus for a 

first approximation, it can be assumed that QD is equal for each individual redistribution process. We will discuss 
i J the consequence of this assumption in Section 3. The factor CLC s reflects the fact that the forward reaction of i - j  

exchange is proportional to the concentration of the ith component in the liquid and the j th  component in the solid. 

The final factor is the fraction of attempted successful interchanges. 

The rate of  reverse reaction is 

= ( + (12) 

Here the convention used is that differences in quantities across the interface, expressed by the symbol A, are the 

values of these quantities in the solid minus those in the liquid. 

2 According to [19] v is in the order of the atomic vibrational frequency (Debye frequency). 
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The redistribution potential/2 i of the ith component is given as the difference between the chemical potential 

and the contribution from the ideal mixing entropy 

~ti (r,  C 1 . . . . .  C n) : =  l.ti (r,  C 1 . . . . .  C n) - R T l n ( C  i) (13) 

and thus 

= - R r  ln(C s/C ). (14) 

As Aziz and Kaplan pointed out [4], the reason for taking the redistribution potential rather than the actual chemical 

potential is that any local entropic effects are included in weighting the rates of individual atomic hops, whereas the 
i J ideal mixing entropy is already accounted for by the C~C j and CsC L factors in Eqs. (11) and (12). If  the interface 

is at equilibrium, this results in equal rates for the forward and the backward reaction J~J  = J;J_ and thus no net 

reaction rate occurs J ;  j = 0. 

Using 

ix i = izio + R T l n ( C  i) + R r l n ( g  i) (15) 

we can further write 

A / 2 i = A / z ~ + R T l n  g~ = - R T l n ( k  i ) _ R T l n [  s.e L ]  (16) 
i i ' 

\ YI~,e)"S / 

To distinguish the actual quantities at the interface from the equilibrium values we have introduced the index e. Thus 
the equilibrium distribution coefficient of the ith component is k i i i i i i = CS,e/CL, e and the actual one is k v = C s / C  L. 

The net diffusive flux of the j th component, J~, is given by the sum of all possible redistribution processes 
with every component present in the s.ystem (i = 1 . . . . .  n). Redistribution processes with same components result 

in a zero contribution to the sum (J~'J = 0). Thus the summation can be carried out over i = 1 . . . . .  n. With 

Eqs. (10)-(12) we obtain 

t /  

• n n vD E(c c _K,,Jc ct), 

i = 1  i = 1  i = 1  

(17) 

with VD := f v ~  exp(-- QD/RT) .  K i'j a r e  the so-called partitioning parameters [4] and they are defined by 

' '  ( A/~j - A/~i ) (18) 
tC t'J := exp R--T " 

With Eq. (16) these parameters can be written as 

{ J yJ i yi } 
"" k j gS,e L g~,e S (19) 

K~'J = k--( yJ }. ,J) , i  y i  " 
L,e  S S,e L 

For ideal solutions and for dilute non-ideal solutions (where the laws of Raoult and Henry apply) Eq. (19) reduces 
to K i,j = k j / k i .  This is also true for equilibrium where the forward reaction of the redistribution i <-+ j is equal to 

the backward reaction of the redistribution j <--> i : JD J = _j/) , i .  
Combining Eqs. (9) and (17) results in 

j V n 
( c J - C s ) ~ D  D = E ( C ~ C ~ - x i ' J C i s  Cj )  with j =  1 . . . . .  n. 

i = 1  

(20) 
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These are the n first response-functions of an n-componental system. For V = 0 these equations are redundant. 
Adding these gives C~ ÷ . . .  + C~ = 1. Knowing the compositions in the liquid at the interface (C~ . . . . .  C~) 
as well as V and T, the first response-functions form a (nonlinear) system of equations for the n unknown solid 
concentrations at the interface (C~ . . . . .  C~). 

C 1 + ..- + C~ = 1 and rearranging the equations in (20) after dividing them with C~ result in the velocity 
dependent distribution coefficient of the j th component 

kj v = V/VD q- Z1/_l Ki'JCis (21) 
V/VD + 1 

For binary systems (n = 2) this can be reduced to 

k2 = V/VD ~ - g  1'2 -~- ( l  - K1 ,2 )C2  V / V  D nt -g  1,2 
s = (22) 

V/VD -~- 1 V/VD -~- 1 - -  (1 - -  K I ' 2 ) C  2"  

With/¢e • K 1,2 this equation is equal to Eq. (11) in [4]. For ideal solutions or dilute non-ideal solutions (K i, j = kj / k i ) 
Eq. (21) with C[ + . . .  + C~ = 1 results in 

G - v~ vD + 
V~ VD q- 1 ( 2 3 )  

2.2. Second response-function 

Chemical rate theory for one componental systems describes the interface movement by assuming thermally 

activating individual hopping processes of atoms across the interface as in Section 2.1. The theory yields for the 
growth velocity 

g = go(T).  [1 - exp(zXG/RT)I, (24) 

where V0 is the maximal growth velocity when the driving force is infinite (no backward hopping) and AG is 
the (negative for solidification) difference between the free energy of solid and liquid responsible for interface 
motion. 

In classical papers on interface kinetics [2,3,20,21] it is assumed that the attachment to the interface is caused by 
a diffusion process. In this case, which is known as "diffusion-limited" growth, the prefactor in Eq. (24) is given by 
the diffusion rate V0 = VD. In pure systems the attachment to the interface according to Turnbull [21], only requires 
impingement processes. This case is known as "collision-limited" growth and the maximal solidification velocity 
is given by the speed of sound V0 = Vs. Evidence of "diffusion-limited" growth was found for: (i) alloys with 
different solubility of solvents in the solid and liquid; (ii) alloys with a chemically ordered solid (e.g. intermetallic 
phases); (iii) systems consisting of molecules which form mainly directed bonds in the solid (e.g. SiO2) and (iv) 
systems consisting of molecules which differ considerably from a spherical geometry. In all cases mentioned above 
a diffusion (or similar) process is needed to incorporate particles in the growing solid. In all other cases "collision- 
limited" growth can be assumed [22]. 

For pure substances AG results from an undercooling of the interface AT. Assuming the linear approximation 
AG = AGo = zXSfAT [23], and AG << RT,  Eq. (24) gives a linear relation between V and AT. For pure metals 
this linear relation is reasonable [ 18[ and has been experimentally proved [24]. 

Aziz and Kaplan assumed [4] that even for alloys the kinetics of interface displacement can be described 
by thermally activated hopping processes across the interface. The driving forces for these hopping processes 



A. Ludwig/Physica D 124 (1998) 271-284 277 

A 
I ~o,L 
G 

A 

A~*A I ~'L 
l ~IA A 

,e = [I-S, , 

A 
~t s 

;:-,,,.. . . . . -"  
:_ 

I I I I 

Cs, e C S C L CL, e 
C - - - -~  

B 
~s 

B 
~O,L 

B _ B 
~L.e- ~S, 

B 
~L 

AIx s 

Fig. 2. The common tangent construction can be applied for a liquid with concentration CL. e in equilibrium with a solid with concentration 
CS,e. For a liquid and a solid with concentration CL and Cs, which are not in equilibrium with each other, a difference in the free energy 
AGDF can be calculated according to Eq. (25) (after [5]). For solidification AGDF must be negative, which restricts the range of possible 
C s to the shaded region. 

are the differences in chemical potentials between the solid and liquid of the different components, A/z i (i = 

1 . . . . .  n ) .  

The total difference of the free energy between the solid and liquid is given as [5] 

A G D F  = C~ • A N ' ,  

i=1 

(25) 

with A/x i : = / ~  - / ~ [ -  For the binary case the range of solid concentration for which AGDF is less than zero, is 

shown in Fig. 2. With AG = AGDF Eq. (24) gives 

= Cs S, V V0 1 - e x p  R - T i = I  (26) 

for the growth velocity. Eq. (26) is the second response-function of n-componental  systems. 

If  the driving forces for solidification are small, i.e. if the linear approximation A G D F / R T  = - V / V o  can be 
applied, the second response-function gives 

V 1 11 . 

VO -- R T E C~s " A f t .  
i= l  

(27) 

For a dilute solution which contains mainly the ith component, the temperature of the interface T can be estimated 
from the corresponding equilibrium concentrations CJ,e by 

A k T = T~ -~. It1 j CJ ,e  . 

j = l , j C t  

(28) 

This equation shows that without further approximation for the temperature dependence of the A f t  's, neither the 

second response-function (Eq. (26)) nor the linear approximation (27) can be solved to give an analytical expression 
for T. 
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Theoretically it is not clear whether AGDF is consumed completely by moving the interface (without solute- 
drag) or whether a AGDF is partly consumed by the redistribution processes at the interface (with solute-drag). 
From [4] it is conceivable that the crystallisation rate should be determined by the driving force for crystallisation 
averaged over all of the atoms that actually crystallise. This argument supports the absence of solute-drag. On the 
other hand, if some of the overall driving free energy is consumed in driving the redistribution reactions, and is 
therefore unavailable to drive interface motion, solute-drag should be considered. That amount can be evaluated by 
AGI) = ~ ( c i s  - C~)Atz i, leading to AG = AGI)F - AGD = ~ C~A[z i in Eq. (24). An argument in support 
of solute-drag is that the liquid atoms should crystallise at a rate determined by the driving force of crystallisation 
averaged over all the atoms on the liquid at the interface [41. This opinion is also hold in [30]. However experimental 
work on Si-9at% As alloys [15,16] indicates that at least in this system, solute-drag does not play an important role. 
Thus in this paper we consider only the case without solute-drag. 

We now give an approximate expression of the second response-function for dilute solutions. Applying basic 
thermodynamics, Eq. (25) can be transformed into 

• / IZ " f /  

(29) 4 

For a dilute solution which contains mainly the ~th component, Eq. (29) gives 

This expression was formulated for a binary system in 1971 by Baker and Cahn [5]. As the sum of components is 
equal to one and as ln(z) -+ (z - 1) for z - 1, the following approximation gives 

C~ln ~ E ( C { . e ( k J -  1 ) + c J ( 1 - @  ))" (31) 
\ [¢t / j=l , j# i  

^ 

Here we have disregarded the second order terms by setting the prefactor of the logarithm, C~, equal to one. With 
this approximation Eq. (30) gives 

n 

t,G  /Rv (1 - (m+C  - mJC ,e), (32) 
j=l,j=~i 

where 

m j m J,, :~ • 
v 

1 - + ln(k / J) (33) 
( 1  - k J) 

is called the "kinetic" slope of the liquidus plane in the "j-direction". Applying the linear approximation of Eq. (26) 
AGDF/RT = - V ~  Vo, together with Eq. (32) results in 

V/Vo ,-~ (1 - kJ)(mJC j _ mJvc~)" (34) mJ L,e 
j=l,j74-i 

A comparison of Eqs. (28) and (34) shows that for n components, despite considering a dilute system, T and V 
cannot be coupled analytically. This is only possible for binary systems (n = 2) where the following relation results 
from this comparison 
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m V 
T = Tf + mvCL + - -  - -  (35) 

1-kVo" 

This equation was derived by Boettinger and Corriell in 1986 [17]. 
Notice that for CL -+ 0 Eq. (35) gives V =/~-  (Tf - T) with/,  = - m / ( ( 1  - k) Vo) = - R T f / ( A &  Vo). In the last 

equation the Van't Hoff law was used. ATk =: (Tf -- T) = V/Iz is known as kinetic undercooling. Eq. (35) states 
that the interface temperature can be calculated by reducing the "actual" liquidus temperature at the interface by 
kinetic undercooling. Following the argumentation given above, this statement is not correct for non-dilute binary 
and arbitrary n-componental systems. 

2.3. Response-functions for curved interfaces 

We now turn to n-componental systems with curved solid/liquid interfaces. According to Mullins [25] and Trivedi 
[26] the chemical potential of the ith component in the solid at the interface is given as 

#iS[K#o = l~isIK=O-+- Vmo 1 g q- ff~-~,] Kl q- )/ q- ~ 2  ] K2 . (36) 

Here ?/is the anisotrope solid/liquid surface tension which depends on two independent angles 0 and ¢p. !)too l i  is the 
molar volume of the ith component. K1 and K2 are the two main curvatures at the considered interface position. 
The difference in chemical potential of the ith component between the solid and liquid in this case is 

AIZilK#O=AIJJlK=Oq-Vmol g + ~ - j  K I +  ? / + ~ 2 } K 2  (37) 

and thus the difference in the corresponding redistribution potentials is 

A~ilK#O=n~iIK=O-}"Vimo 1 y q - ~ ' ~ ] K 1  q- yq- ~ 2 j g 2  . (38) 

With this equation the partitioning parameters defined by Eq. (18) changed to 

I¢i'Jlg¢o=Ki'JlK=o'eXp( (VJm°l-Vim°l)[(Y+O2v/OO2)Kl+(y+O2V/Op2)K2])RT " (39) 

In this paper it is assumed that the atomic volume is approximately equal for all components, and therefore the 
argument of the exponential function in Eq. (39) is zero. Thus the partitioning parameters, and with this the first 
response-functions, are equal for systems with flat and curved solid/liquid interfaces. 

For the total difference of the free energy between the solid and liquid we obtain with Eq. (37) 

aaDFIK 0 = a . i  IK 0 
i=1 

n . . [ (  02V~ ( 02¥~ i n Vmol" 
= E C ~ ' A / * ' I K = 0 +  V + ~ 0 ~ , j K , +  V + - ~ 2 j K 2  E C i s  • , (40) 

i=1 i=1 

With the assumption of equal atomic volumes and with C~ + - • - + C~ = 1 this equation gives 

AGDFIK¢0 = AGDFIK=0 q-- ASK (41) 
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with AGK := [(g + 02y/oOZ)K1 + (g + 02y/Oq)2)K2]Vmol. Hence, we obtain for the growth rate 

g = 110 • [1 - exp(AGDF[K=0 + AGK)/RT]. (42) 

This is the second response-function of n-componental systems with curved solid/liquid interfaces. 
The total difference in free energy between the solid and liquid in a system with curved solid/liquid interface 

is given as Eq. (41) and has been assumed previously by Brunco et al. [27,28] for dilute binary systems. Aziz 
commented upon this assumption in [29]. 

For (AGDF + AGK) << RT the linear approximation of Eq. (42) holds and we thus obtain 

I ( A G K + ~ A G J F ) ,  (43) V/Vo = - R T  
j=l,j¢~ 

where 

AGDF/RT := C J" A/zJ Ix¢0 (44) 

represents the "weighted" driving force for interface motion due to the deviation from equilibrium of the j th 
component. 

For a dilute n-componental system, Eq. (43) with Eq. (32) results in 

1 - A G K  + - - -  (roYCe, e . V/Vo = ~ mJ 
j=l,j¢i 

As in the case of a fiat solid/liquid interface (Eq. (34)), it is not possible to combine this equation with Eq. (28) to 
obtain an analytical relation between T and V. This is only possible for dilute binary systems. Considering only 
one curvature KI = K2 = K and applying the Van't Hoff rule, Eq. (45) gives for binary systems 

V/Vo ~-~ g + 02]//002 + 02V/0q°2 KVmol + ASf (T - (7) + royCE)) (46) 
RT 

and with Eq. (28) 

T = Tf + mvCL -- V/# - Fo,~K (47) 

with/-'0,~o := F + (02y/002 -~- oZl//O(p2)Vmol/ASf [25]. /" := yVmol/ASf is the Gibbs-Thomson coefficient. 
ATR := F K  is called capillary or curvature undercooling [18]. 

From Eq. (47) it is often assumed that for arbitrary alloy systems the actual interface temperature is given as the 
liquidus temperature at the interface minus "kinetic undercooling" and "curvature undercooling". The derivation 
presented above shows that this assumption is not valid for non-dilute binary and arbitrary n-componental systems. 

3. Results and discussion 

Using the commercial thermodynamic software tool ChemApp TM, which allows the evaluation of #} (T, C~, 
C~) and #~(T, C[, C n) (as subroutine library in FORTRAN), we have solved the four-dimensional non- ---, " ,  g 

linear system of equations consisting of the three first response-functions (Eq. (20)) and the second response-function 
(Eq. (26) and/or Eq. (42)) for the ternary A1SiCu system. We have focused our attention especially on (i) the 
movement of the solid/liquid interface for different velocities, and (ii) a spherical crystal with different stationary 
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Fig. 3. (a) Solid concentrations at the interface as a function of growth velocity for an alloy in the ternary A1SiCu system. The shape of 
the curves is similar for planar and dendritic growth. (b) Interface temperature as a function of growth velocity for a planar interface (full 
line) and a dendrite tip (broken line). 

sizes within the melt (V = 0). We have performed our calculation for C si = 8 mol% and C Cu = 7 tool% and used 

VD = lm/s and Vo = 103 m/s. 

The movement of the solid/liquid interface for different velocities was calculated for a planar front and for the 

tip of a dendrite. In the latter case we have assumed that: (i) the tip has the shape of a paraboloid of revolution; (ii) 

anisotropy of surface tension can be disregarded; and (iii) V 2 • R is constant with V • R 2 = 10-14m3/s. Solving 

the diffusion problem around a growing dendrite tip in the considered ternary alloy system exactly is beyond the 

scope of this paper. On the other hand, the scaling law of the constancy of V • R 2 is well established [18]. The 

assumed nominal value of 10-14m3/s for this constant is correct for A1 0.165wt.% Cu and may only give an order 

of magnitude approximation for the considered ternary alloy. However, we believe that the basic differences in the 

prediction of the presented model for the growth of a flat and a dendritic interface shape will be covered by this 

value. From the three assumptions for dendritic growth we obtain AGK = (27/Vmo] V i /2/10-7)sl /Z/m3/2,  3 which 

was used in the second response-function (Eq. (42)). 

3 Here we used y = 9.3 - 10-2j/m 2 and Vmo I = 1.1 • 10-5m3/mol [18]. 
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Fig. 4. (a) Concentrations in the solid at the interface as a function of the radius of a spherical crystal with V = 0 ("equilibrium") for an 
alloy in the ternary A1SiCu system. (b) Interface temperature as a function of the radius calculated from the present model (full line). The 
interface temperature resulting from applying the curvature undercooling expression is shown for comparison (broken line). 

Fig. 3(a) shows the velocity dependence of Cs Si, C Cu and Fig. 3(b) that of  T. For large V the solid concentration 

at the interface increases until the nominal liquidus concentration is reached. Thus the model predicts full solute 

trapping for sufficiently large growth velocities. The reason for both curves in Fig. 3(a) having a similar shape is the 

use of  the same VD for both components. This is, in fact, a result of  the assumption that the activation barrier QD is 

equal for each redistribution process across the interface. Although it is not clear what determines different QD'S, it 
is conceivable that different alloy components can be trapped at different growth velocities. This could formally be 

represented by different VD'S. Considering the diffusion theory for multi-componental systems for the evaluation 

of the QD'S, the present model can probably be refined. 

Fig. 3(b) shows that the interface temperature decreases as the concentrations increase. For full solute trapping 

a change in the slope of the T-V relation can be seen. The decrease of  the interface temperature with velocity is 

so high for the considered alloy that a change in the diffusivity is expected and thus temperature-dependent VD'S 
should be considered to describe the process realistically (which is not done in the presented example). 

The curvature effect taken into consideration for the growing dendrite tip does not influence the solid concentration, 

and affects the interface temperature (tip temperature) clearly, as can be seen in Fig. 3. The tip temperature, 
represented by the broken line in Fig. 3(b), is below the interface temperature for the planar front, as expected from 
the dilute binary alloy. 
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To evaluate the interface response-functions for spherical crystals with different stationary sizes within the melt 
(V = 0), we have assumed that the curvature is simply given as K = 2/R .  Fig. 4 shows the solid concentration and 
the interface temperature as a function of R. The model predicts that the presence of a curved solid/liquid interface 
affects C si, C cu and T simultaneously. Applying the widely used Gibbs-Thomson formulation, the concentrations 
at the interface should not be influenced and the interface temperature should be given as TR = TL -- 2 F / R .  Asf 
is the entropy of fusion per volume. For comparison the "Gibbs-Thomson" interface temperature is also given in 
Fig. 4(b). 4 Obviously, as the Gibbs-Thomson formulation describes the deviation from equilibrium (flat interface) 
only by a temperature reduction, it overestimates the real "curvature undercooling". Instead, curvatures lead to a 
deviation from equilibrium by affecting "all available" quantities. 

4. Conclusions 

For an n-componental alloy system the solid/liquid interface reacts to a deviation from thermodynamic equilibrium 
by a displacement of the interface position accompanied by a redistribution of solute across the interface. This 
reaction is expressed by (n + 1) response-functions, which correspond to the general from 

Cis = f~ (T, V, C 1, C n C 1, C n L . . . .  L, S . . . .  S), where/ = 1 . . . . .  n (48) 

and 

v = f 2 ( r ,  c 1, c n Cs n K )  L " ' ' ,  L'  ' " ' C s '  (49) 

Analogue to the binary case, we have named Eq. (48) first response-functions and Eq. (49) second response-function. 

In the present paper we have derived analytical expressions for these response-functions with and without curvature 
effects (Eqs. (20), (26) and (42)). It is shown that for dilute binary alloys, the first response-function gives the kv (T)-  
expression from the model of Aziz and Kaplan [4]. The second response-function gives for dilute binary alloys in 
case of flat interfaces the expression for the interface temperature derived by Boettinger and Corriell [17] and in 
case of a curved interface to the same expression combined with ATR -- 2 F / R .  

For non-dilute binary and any arbitrary multi-componental alloy systems it is not possible to resolve the response- 
functions to yield an analytical expression for the T - V  relation. Thus, it is not appropriate to use a kinetic under- 
cooling term (Tk = V/lz)  and a curvature undercooling term (ATR = 2 F / R )  in these general cases. 

Instead the T - V  relation and the c i s - v  relations (i = 1 . . . . .  n) can only be evaluated by solving an (n + 
1)-dimensional nonlinear system of equations whereby on-line use of thermodynamic information is necessary. 
Examples of such calculations are given for an alloy of the A1SiCu system. The presented model describes partially 
and fully solute trapping for flat interface growth and for dendritic growth. In addition for a stationary spherical 
crystal, the curvature of the solid/liquid interface affects not only the interface temperature, but also the solid 
concentration of the different components. 
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