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Abstract
An overview of simulation of casting, homogenization, and hot rolling
of an aluminium alloy is addressed in this paper. The microstructure
models used to describe casting, solidification, precipitation (growth and
coarsening) during homogenization, deformation texture evolution, and the
work hardening behaviour are presented as well as their respective theoretical
backgrounds. Emphasis is placed on interfacing the microstructure models
with each other between the processing steps. This makes it possible to
take into account microstructural changes that occur early during processing
during later production steps. Along with this overview, reference will
be made to previously presented simulation and experimental results—for
validation—where appropriate.

1. Introduction

The process of production of aluminium sheets is divided into casting, solidification, heat
treatment, and forming. All these stages of the production process were simulated with
physically based models. The models have been validated by comparison with experimental
processing.

In this paper, the authors’ main emphasis lies in description of the models and the coupling
strategy that has been developed so far (table 1). This strategy aims at describing each
processing stage by its most important microstructural phenomena while taking the previous
processing stage into account and thus creating a through process modelling approach. The
associated results have been presented elsewhere as referred to in the text.
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Table 1. Brief overview of the main (simulated and measured) results of each process step. These
are handed to the next step, where they are input for the models.

Results of simulations Necessary measurements

Convection during solidification
Microstructure evolution during solidification

Grain size
Grain density Grain size distribution and
Phase fraction phase distribution
Microsegregation

Heat treatment of alloys
Phase fraction
Mean radius Texture
Solute element concentrations

Forming
Deformation texture
Strain hardening
Recrystallized volume fraction
Resulting forces and torques

Flow curves

2. Solidification and casting structure formation

A two-phase globular equiaxed solidification model considering both grain movement and
melt convection was developed [1–6]. The conservation equations, source terms, exchange
terms, and some auxiliary terms are shown in table 2.

The liquid and solid phases are transported according to the mass conservation equation (1),
taking solidification into account through a mass transfer term, Mls (=Msl), which is defined
in equation (7). The volume fractions of both phases are subject to fl + fs = 1. Momentum

exchange,
⇀

Uls (=− ⇀

Usl), in equation (2) consists of two parts: one due to mass transfer,
⇀

U
p
ls,

and the other due to drag force,
⇀

U d
ls. Details about the drag force model are given elsewhere

[1, 3]. The solute concentration in the liquid and solid is calculated by solving equation (3).
The solute partitioning at the liquid–solid interface due to phase change, C

p
ls, is taken into

account, while the solute diffusional exchange at the liquid–solid interface Cd
ls is neglected.

A mix concentration, cmix, is defined in equation (11) to describe the macrosegregation. The
enthalpy conservation equation (4) for both phases are also solved separately, and hence we
get two different temperatures, Tl and Ts. With a relatively large diffusional heat exchange
term, Qd

ls, between the liquid and solid phases, the temperature difference can be levelled out,
and a thermal equilibrium (Tl ≈ Ts) is obtained. The enthalpy difference (hl − hs = �hf)

defines the latent heat. Details of how the latent heat is handled in this model are also described
previously [1, 3]. An additional conservation equation (5) is solved to obtain the grain density
distribution, n. The grains are transported according to

⇀
us. An empirical three-parameter

nucleation law (equation (6)) is used [7]. With the known n and fs, the averaged grain size, ds,
is estimated by equation (12).

The conservation equations are solved with a control-volume based finite difference
method. With this two-phase solidification model all the necessary volume-averaged variables
describing the globular equiaxed solidification are obtained: temperature, T , and constitutional
undercooling, �T , nucleation rate, N , grain density, n, and grain size, d, grain movement
velocity,

⇀
us, and melt convection velocity,

⇀
ul, concentrations in solid phase, cs, and liquid

phase, cl. This model was applied to study the solidification and structure formation of the
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Table 2. Conservation equations, source and exchange terms, and auxiliary equations for the
numerical model of globular equiaxed solidification.

Conservation equations

Mass:
∂

∂t
(flρl) + ∇ · (flρl

⇀
ul) = Msl (1)

∂

∂t
(fsρs) + ∇ · (fsρs

⇀
us) = Mls

Momentum:
∂

∂t
(flρl

⇀
ul) + ∇ · (flρl

⇀
ul ⊗ ⇀

ul) = −fl∇p + ∇ · ¯̄τ l + flρl
⇀
g + �Usl (2)

∂

∂t
(fsρs

⇀
us) + ∇ · (fsρs

⇀
us ⊗ ⇀

us) = −fs∇p + ∇ · ¯̄τ s + fsρs
⇀
g + �Uls

where ¯̄τ l = µlfl(∇⊗⇀
ul + (∇⊗⇀

ul)
T) and ¯̄τ s = µsfs(∇⊗⇀

us + (∇⊗⇀
us)

T)

Species:
∂

∂t
(flρlcl) + ∇ · (flρl

⇀
ul cl) = ∇ · (flρlDl∇cl) + Csl (3)

∂

∂t
(fsρscs) + ∇ · (fsρs

⇀
us cs) = ∇ · (fsρsDs∇cs) + Cls

Enthalpy:
∂

∂t
(flρlhl) + ∇ · (flρl

⇀
ul hl) = ∇ · (flkl∇ · Tl) + Qsl (4)

∂

∂t
(fsρshs) + ∇ · (fsρs

⇀
us hs) = ∇ · (flks∇ · Ts) + Qls,

where hl = ∫ Tl
Tref

cp(l) dT + href
l and hs = ∫ Ts

Tref
cp(s) dT + href

s

Grain transport:
∂

∂t
n + ∇ · (

⇀
usn) = N (5)

Source terms

Nucleation: N = d�T

dt
· nmax√

2π · �Tσ

· exp

(
− 1

2
·
(

�T − �TN

�Tσ

)2
)

(6)

Exchange terms
Mass transfer: Mls = gα · �c · (n · πd2

s ) · ρs · fl (7)

Momentum: �Uls = �Ud
ls + �Up

ls
�Up

ls = �u∗ · Mls �Ud
ls = Kls(�ul − �us) (8)

Species: Cls = Cd
ls + C

p
ls C

p
ls = c∗ · Mls Cd

ls neglected (9)

Enthalpy: Qls = Qd
ls + Q

p
ls Q

p
ls = h∗ · Mls Qd

ls = H ∗ · (Tl − Ts) (10)

Auxiliary terms

Mix concentration: cmix = cl · ρl · fl + cs · ρs · fs

ρl · fl + ρs · fs
(11)

Grain diameter: ds =
(

6 · fs

π · n

)1/3

(12)

Solid viscosity: µs =




µl

fs
·
((

1 − fs

f c
s

)−2.5·f c
s

− (1 − fs)

)
whenfs < f c

s

∞ else

(13)

industrial alloy AlCu4Mg. With Ti as grain refiner, the morphology of the solidified primary
phase was handled as a sphere.

The simulation and experimental evaluation procedures of the ingot (plate) casting are
shown in figure 1. The melt, with pouring temperature 700˚C, is poured into a metal (steel)
die with mould preheating of 300˚C. The temperature distribution after mould filling is then
transferred to the two-phase globular equiaxed solidification model. The heat exchange
coefficient at the casting die interface is 800 W m−2 K−1. A convection heat exchange
boundary condition on the top surface of the casting was applied; the convection heat
transfer coefficient is taken as 50 W m−2 K−1 and the environmental temperature as 10˚C.
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Figure 1. Mould filling and solidification simulations. Casting trials are made to evaluate the
simulation results. The predicted grain size distribution is further transferred to the subsequent
homogenization model.

The solidification shrinkage and the thermal-solutal convection are ignored for this case,
but the grain sedimentation and the sedimentation-induced convection are considered with
the Boussinesq approach. Both grain sedimentation and the sedimentation-induced melt
convection are found to have a strong influence on the final grain size distribution. Details
of the solidification and structure evolution processes were previously analysed in [2, 6]. The
fine grain size (∼262 mm) at the bottom region is mainly due to the high nucleation rate in
the initial stage and partially due to the sedimentation. The largest grains (∼390 mm) are
predicted near the surface regions, about 30–40 mm above the bottom. Those large grains
are actually transported from the upper regions. After nucleation in the upper regions, they
sink downwards. They grow while sinking and finally reach a large grain size during their
relatively long travel. The relatively small grains predicted in the central region are due to the
melt currents, which transport the fine grains from the bottom regions upwards to the centre.

For validation, experimental castings were performed. The castings were sectioned, and
specimens were taken at different positions. The microscopic metallographic examinations
were made with Barker etching, and the grain size was measured manually at equal intervals
(2 mm) across the casting sections. Around each measuring point, ten random grains were
selected and the grain size was averaged. The grain size distribution in the real casting
agrees reasonably well with the numerical prediction [2]. The casting section was also energy
dispersive x-ray (EDX) analysed for macrosegregation. The experimentally measured data are
relatively scattered. It is difficult to compare the experimental data with the numerical results
quantitatively. However, the measured result shows the same tendency as the simulation:
there is a lower concentration in the casting bottom region and a higher concentration in
the top region. Considering the complexity of the equiaxed solidification process, the above
agreement is found to be encouraging.

In addition to the above macrostructure simulation, the micro–macro coupling is
made to calculate the microstructure parameters such as the phase fraction, dendrite arm
spacing, and microsegregation [8]. The temperature field in the casting can be obtained by
solving the enthalpy conservation equation under a system scale. A one-dimensional FDM
microsimulation module is implemented in the main solver to calculate the microstructure
parameters locally. The macrotemperature distribution and the local cooling rate serve as
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Figure 2. General overview of the model. The combination of thermodynamic and kinetic data
has enabled the user to address the time dependent evolution of the precipitation process.

inputs for the micromodule. As feedback, the release of latent heat and the change in the heat
capacity, which are determined by the change of phase fraction and phase concentration in
the microsimulation module, will be passed to the macrotemperature simulation. In order to
determine the local liquid–solid interface equilibrium information, a thermodynamic software
(Thermo-Calc) is used. Simulations on the same plate casting as shown in figure 1 were made.
It was found that the numerical predictions correspond to the experimentally observed phase
fractions and dendritic arm spacing.

3. Homogenization

The homogenization process was modelled within the framework of classical nucleation
theory and deterministic rules for the growth and coarsening of precipitates, as originally
proposed by Zener [9]. Therefore, a statistical model for precipitation processes has been
developed by Schneider et al [10]. The growth law for a single precipitate includes growth
from the supersaturated matrix as well as coarsening due to the Gibbs–Thomson effect.
Combining the nucleation rate and the growth law in the continuity equation makes it possible to
describe the evolution of the whole precipitate size distribution. Since an analytical solution of
this partial non-linear inhomogeneous differential equation cannot be obtained, it was solved
numerically in a manner similar to that postulated by Kampmann and Wagner [11]. This
approach makes sure that the information of the whole size distribution is considered. The
model is capable of describing the simultaneous nucleation, growth, and coarsening of several
types of spherical precipitates. In contrast to simulations taking into account local diffusion
fluxes on a spatial grid (e.g. Cahn–Hilliard simulations), the present algorithm is fast and
therefore of particular interest for industrial applications.

The input parameters for the model can be subdivided into two groups. On the left-hand
side of figure 2, we start with the thermodynamic database. In the regular case, these databases
contain parameters to describe the Gibbs energy functions for all phases of the alloy system.
To obtain the values of the equilibrium state, the elements must be spread to all phases in order
to minimize the Gibbs energy of the whole system.

To calculate the equilibrium phases, the chemical driving forces, and the equilibrium
concentrations, the commercial Gibbs energy minimizer ChemApp [12] and a thermodynamic
database (COST 507 [13]) were embedded. The main advantage of this strategy is that there is
nearly no restriction to a special alloy system. Further on, the model is capable of describing
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the mentioned alloy system with respect to the phase diagram and the latent heats over the
whole range of temperature and concentrations. We just have to assume that the system has
been investigated and that the thermodynamic database is available.

As the equilibrium state describes the behaviour of the alloy system only after an infinite
amount of time, kinetic data and material properties must also be considered to obtain the time
dependence of the precipitation process. Only physically based parameters have been used
to describe the precipitation kinetics. These parameters, such as diffusion data and interface
energies, have to be taken from the literature [14, 15].

3.1. Homogenization model description

The activation energy for nucleation consists of three parts, namely the chemical free energy,
�G(c), arising from the chemical supersaturation of the solutes, the interfacial energy, �GI,
spent for creating the precipitation/matrix interface, and the strain energy, �GS, used to
accommodate the strain mismatch. As the thermodynamic data are measured in terms of
heat capacities, the sum of �G(c) and �GS is given as the transformation energy, �GT,
represented as the latent heat, �gT, per unit volume. Therefore, the Gibbs energy for each
precipitate reads as

�G = −�GT + �GI or �G = −V · �gT + S · σ (14)

V is the volume and S the surface of the precipitate. Assuming spherical nuclei, we obtain the
critical radius, rc, from the first derivative of the Gibbs energy function. Now, the nucleation
rate per second can be calculated according to Becker and Döring [16]:

Ṅ = N0 · Z · β · exp

(
−�G (rc)

kB · T

)
(15)

N0 represents the maximum possible number of nuclei. T is the temperature, n2(rc) the
number of atoms per nucleus, and kB the Boltzmann constant. The Zeldovich factor, Z, is a
normalization variable that can be expressed according to Kampmann and Wagner [11]. The
rate, β, at which solute atoms join the critical radius may be calculated according to [17, 18].
For this calculation the following values are necessary: D, the diffusion coefficient of the
slowest diffusing element, c(t), its current matrix concentration, and λ, the lattice parameter.

To set off nucleation, we added a Gaussian distribution to the existing size distribution.
The growth and coarsening of the precipitates can be calculated according to Zener [19]:

dr

dt
= c(t) − cα(r)

cβ − cα(r)
· D

r
(16)

The growth law for a single precipitate includes its growth from the supersaturated matrix, c(t),
as well as coarsening due to the Gibbs–Thomson effect. From the equilibrium concentration
of the precipitates, cβ , and the Gibbs–Thomson concentration, cα(r) [20],

cα(r) = cα exp

(
1 − cα

cβ − cα
· 2 · �σ · V

β

M

RG · T
· 1

r

)
(17)

where cα and cβ are the equilibrium concentrations of the matrix and the precipitate, V β

M is the
molar volume of the precipitating phase, and RG is the gas constant. Combining the nucleation
rate and the growth law in the continuity equation, it is possible to describe the evolution of
the whole precipitate number and size distribution, f (r, t).

∂f (r, t)

∂t
+

∂

∂r

(
dr

dt
· f (r, t)

)
= Ṅ (18)
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Figure 3. Simulated evolution of number and size distributions of second-phase particles during
homogenization (alloy: lab-cast AA2024).

Since an analytical solution of this partial non-linear inhomogeneous differential equation
cannot be obtained, it was solved numerically in a manner similar to that postulated by
Kampmann and Wagner [11]. This approach makes sure that the information on the whole
number and size distribution is considered. Since all equations are given in a differential way
with respect to time, non-isothermal conditions can be treated as small steps of isothermal
conditions.

The results of this type of simulation are the number and size distributions of second-phase
particles and the chemical composition of the matrix phase (figure 3). These results are used as
input (see also table 1) for the three-internal-variable model (3IVM), which calculates the flow
stress in subsequent forming steps (e.g. rolling). As described in the following section, these
data are used mainly to quantify statistically the obstacles’ distance for dislocation movement.

4. Forming

After homogenization of aluminium alloys, the next step in industrial production of sheet
metal is hot rolling. The key to accurate, predictive modelling of forming processes is correct
calculation of the flow stress, kf . The flow stress is stress determined by uniaxial compression
tests (with minimized friction). Its evolution is governed by a multitude of physical hardening
and softening mechanisms, of which the most important (by influence on kf ) are taken into
consideration by the 3IVM [22]. Crystallographic texture also influences the flow stress
evolution, and its description during forming is currently a subject of greater interest as it
affects the forming behaviour of sheets by causing plastic anisotropy. The models applied and
the linking strategy between them are described in the following.

Recent results of simulations that were carried out with the modelling scheme described
in this section are presented by Neumann et al [21].

4.1. Three-internal-variable model

Metals with high stacking fault energies such as Al and its alloys tend to build cellular
dislocation substructures. In contrast to cold forming, such a structure is observed after hot
deformation in the case of Mg alloyed aluminium also. A model capable of representing such a
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structure was developed by Roters et al [22]. This model is referred to as the 3IVM. Like other
previously published statistical one- [23, 24] and two-parameter [25, 26] models, the 3IVM
consists of a kinetic equation of state and a set of equations that account for the description of
the microstructural evolution.

The 3IVM describes the dislocation substructure by considering three populations of
dislocation densities: the immobile dislocations in the interior of the cells (ρi), the immobile
dislocations in the cell walls (ρw), and the mobile dislocations (ρm). Because of their
motion, the mobile dislocations are considered to be the carriers of plastic strain in the
crystal. The evolution of each of these dislocation densities is described by an equation
of the following form:

ρ̇x = ρ̇+
x − ρ̇−

x (19)

where x is m, i, or w, depending on which population of dislocation densities is considered.
The Orowan equation is used as the kinetic equation of state for calculating the external stress:

γ̇ = ε̇ · M̄ = ρm · b · vglide (20)

where γ̇ is the shear rate, ε̇ the imposed strain rate, M̄ the average polycrystal Taylor factor, b

the magnitude of the Burgers vector, and vglide the average velocity of dislocation movement by
glide. The dislocation velocity is calculated assuming stress-assisted and thermally activated
overcoming of short-range obstacles:

vglide = λ · ν0 · exp

(
− Q

kB · T

)
· sinh

(
τeff · V

kB · T

)
(21)

where λ is the jump width, ν0 the attack frequency, Q the effective activation energy for
overcoming obstacles, and V the activation volume. Furthermore, kB is the Boltzmann constant
and τeff is the effective stress. The activation energy used is an effective value. It includes the
different effects of passing short-range obstacles: cutting of forest dislocations and dragging
of jogs and solute atoms. The jump width corresponds to the mean obstacle distance. Since
recently, the spacing of solute atoms is also taken into account by the 3IVM next to the spacing
of forest dislocations in cell walls and interiors for calculation of λ. For this, Goerdeler and
Gottstein [27] proposed a linear reciprocal superposition of the different obstacle spacings:

1

λx

= √
ρx +

1

lF
(22)

The subscript x is either i or w, denoting the values obtained for the cell interiors and walls,
respectively. lF represents the Friedel length, which is used to quantify the effective spacing
of solute atoms. Though this is a very basic approach to solute hardening, it has proven to be
extremely useful for predicting the influence of solute contents on flow stress [27].

Accordingly, the effective stresses, τeff , in cell walls and interiors can be calculated for a
set of given strain rate, temperature, and dislocation densities. The athermal stress contribution
caused by long-range dislocation interaction is added, resulting in the total shear stresses, τi,w,
that are calculated as

τi,w = τeff,i,w + α · G · b · √
ρi,w (23)

Then, the flow stress, kf , is calculated as the weighted sum of the total shear stresses of
both volume fractions:

kf = M̄ · (fi · τi + fw · τw) (24)

where fi and fw are the volume fractions of the cell interiors and walls, respectively.
The 3IVM is implemented into an implicit FE software. The FE code calls up the 3IVM

for each finite element of the workpiece at each Gauss point in each iteration. The local values
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Figure 4. Micro–macro coupling strategy for hot and cold forming simulations of aluminium
alloys.

for alloy composition, Taylor factor, temperature, strain, and strain rate are transferred to the
3IVM by the FE code, which in turn calculates the dislocation density evolution, starting from
the values calculated in the previous increment. Then, the flow stress is returned to the FE code
by the 3IVM, allowing feedback of the dislocation density evolution on the material stiffness
in the FE model. Furthermore, a texture model (briefly described below) is used to calculate
the average Taylor factor in each element incrementally. The value of the Taylor factor is
used by the 3IVM in the flow stress calculation and implicitly in the calculation of kf (see also
figure 4).

4.2. Deformation texture

The plastic flow of a metal does not depend solely on dislocation interaction but also on
the crystallographic orientation of the grains in the workpiece. The distribution of the
grain orientations weighted by their volume fractions is referred to as the texture of the
material. In metal forming processes, the grain orientations change, and it can be observed
that grains rotate into certain preferred orientations for an imposed strain path (e.g. rolling).
This causes a deformation texture, which in turn causes anisotropic flow behaviour of the
material in subsequent forming operations, especially in deep drawing [28]. The knowledge
and understanding of material flow is important for avoiding defective products and reducing
prototyping time in die design.

The grain orientation in reference to the macroscopic coordinate system (e.g. sheet) is
defined by the three Euler angles. The change in grain orientation is caused by lattice rotation
during forming [29]. A material’s texture changes throughout the forming process, starting
from the initially measured texture, which must be taken into account for prediction of texture
evolution (see table 1).

4.3. Simulation with full constraints Taylor model

A number of models capable of describing the evolution of deformation texture have been
developed in the past [30]. A model very frequently referred to was developed by Taylor [31].
The most important restriction of the Taylor model is the compatibility of distortion, meaning
that a single grain has to undergo the same distortion as a macroscopic sample. This is why
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the classical Taylor model is also referred to as a full constraints model (FC model). In the
present simulations, it was used solely for interactive calculation of the Taylor factor, which
represents the influence of texture on flow stress evolution in the 3IVM. The Taylor factor of
a single grain amounts to

M =
∑s

i=1 |dγi |
dεV

(25)

with incremental equivalent macroscopic strain dεV , dγi the incremental amount of slip on
a slip system i, and s the number of slip systems. M̄ can then be calculated as the volume-
weighted average of all orientations in the polycrystal. The value of M̄ is passed on to the
3IVM (figure 4). Implementation of the Taylor model into the FE code has been presented by
Aretz et al [32, 33].

Comparisons of different deformation texture models have shown that for face-centred
cubic metals the FC Taylor model shows only rough qualitative agreement with measured
rolling textures [34]. However, the evolution of M̄ , which is on its own a rather rough
statistical description of the texture, is only slightly influenced by this deviation, so that in the
described interactive framework of FEM, 3IVM, and FC Taylor, the simple FC Taylor model
does perform well and operates time-efficiently for capturing the effect of texture evolution on
strain hardening (figure 4).

For a detailed description of the texture evolution, more sophisticated models are used.
Due to the high computational demands of such models, they are run in postprocessing and only
for certain areas that are of special interest in a workpiece (e.g. centre and surface of slab/sheet
during rolling). Therefore, the strain path of the respective elements of the FE mesh, which
describes their deformation history, is transferred to the deformation texture model.

4.4. Simulation with grain interaction model in postprocessing

In order to achieve the above-mentioned more precise prediction of deformation textures,
models have been developed allowing for locally heterogeneous deformations of the material,
in contrast to the FC Taylor model. One such model is the so-called GIA model [35]. The GIA
model considers intergranular interactions by describing an eight-grain aggregate embedded
in a homogeneous medium. The deformation of the complete aggregate is fully prescribed,
as for single grains in the classical FC Taylor model. For each grain of the GIA model, all
shear and strain components in the strain rate tensor, ε̇ij , are relaxed, and so each grain can
deform differently according to its kinematic hardness (Taylor factor). This causes strain
incompatibilities among the grains, which are removed by the introduction of geometrically
necessary dislocations (GNDs), causing additional deformation energy. By adding the GND
energies and the Taylor energies for slip on the active slip systems in all eight grains, the total
energy for the deformation of the aggregate is described. Minimizing this total energy delivers
the amount of relaxation, the active slip systems, and the amount of slip on them—thus the
orientation change in each grain.

The input texture for the model has to be discretized into a number, N0, of single
orientations. These orientations are assumed to be randomly distributed among N0/8
aggregates of eight grains. Each cluster is then treated separately. It is important to mention
that the model is strongly material dependent. The elastic constants, grain size, and shape as
well as crystal structure are accounted for by the model. Measured or modelled work hardening
curves serve as inputs to the model and indirectly reflect different deformation conditions with
respect to temperature, strain rate, and chemical composition, which strongly influence the
texture predictions [36, 37].
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Recent comparisons have demonstrated the outstanding performance of the GIA model
[34, 38]. Considering the much higher computational demands of similarly performing crystal
plasticity FE models makes GIA a most powerful tool for complicated texture simulations
throughout a process with various deformation steps, as e.g. described in [39, 40]. Besides,
a system is under development to determine nuclei spectra for recrystallization with the GIA
model, which establishes a close link to recrystallization modelling [41].

5. Conclusions and outlook

5.1. Solidification and casting structure formation

A two-phase volume averaging model is successfully used to simulate the solidification in an
aluminium ingot casting including nucleation, grain evolution, grain movement, sedimentation,
melt convection, solute transport, and macrosegregation. Through micro–macro coupling, it
is able to calculate the other microstructure parameters, such as the phase fraction, dendrite
arm spacing, and microsegregation. Satisfactory agreement between the simulations and the
experiments is found. This indicates that the experimentally observed microstructure and its
formation mechanisms can be well explained with numerical simulations; the numerical model
can be further developed as a tool to predict and control microstructure.

5.2. Homogenization

This processing stage is modelled taking simultaneous nucleation, growth, and coarsening
of several types of spherical precipitates into account. The grain size, grain density, phase
fraction, and microsegregation calculated by the model for casting and solidification are input
parameters for this model.

5.3. Forming

The strain hardening (via dislocation density modelling) and deformation texture models
utilized as well as the coupling strategies applied were presented. The input parameters
from the homogenization model to the forming models are the phase fraction, the mean
radius of precipitates, and the solute element concentrations. Furthermore, the model coupling
techniques applied were presented.

5.4. Outlook

In the future, cold forming will become the last step of production in the process chain
presented. Cold rolling and deep drawing of a cup will be the last stages described. The
texture calculated during hot rolling will be an input of importance for this step as a texture-
based yield locus is to be used in order to predict the plastic anisotropy during sheet metal
forming (the earing profile in this case).
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