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Numerical investigation of grid influence on
formation of macrosegregation

L. Könözsy*1, A. Ishmurzin2, F. Mayer2, M. Grasser2, M. Wu2 and A. Ludwig1,2

The investigation of grid influence on numerical prediction of the formation of macrosegregation is

an important issue in the point of view of numerical modelling. The estimation of numerical

accuracy for the simulation of complex multiphase phenomena is a difficult modelling process,

since the thermophysical properties depend on the temperature and concentration as well. The

numerical stability and accuracy of the modelling also depend on the chosen time step and grid

size. This paper focuses on the grid influence and modelling questions on macrosegregation in a

benchmark ingot using Fe-0?34 wt-%C steel. The FLUENT-ANSYS v6?3 commercial software

does not have built-in multiphase solidification and melting module for simulating columnar to

equiaxed transition. Therefore, a multiphase model was implemented using User-Defined

Functions. The number of grid cells has been increased from 180 to 4300 to define an optimal grid

size, to prove the reliability of the model implementation based on solution accuracy. The results

show, the macrosegregation pattern does not change significantly above a well-chosen number

of grid cells.

Keywords: Multiphase flows, Numerical methods, Grid influence, Macrosegregation

Introduction
The mathematical modelling of metallurgical processes
is currently a relevant field related to computational
fluid dynamics (CFD) where the flow phenomena have
been considered. Gu1 and Beckermann1–3 used a model
to study the macrosegregation with numerical solution
of fully coupled mass, momentum, energy and species
conservation in the case of an industrial steel ingot. The
present work uses a multiphase model by Ludwig et al.4

and Wu et al.5–6 which is briefly described in this paper.
Literature can be readily found in the fields of numerical
modelling in material science and engineering (e.g.
Rappaz et al.,7 Hattel8), in multiphase flows (e.g.
Kolev,9 Brennen10), in solidification (e.g. Kurz and
Fisher11) and in CFD modelling (e.g. Fletcher,12

Hirsch,13 Ferziger and Perič14). These methods are
based on the numerical solution of partial differential
equations related to fluid mechanics. Since, the flow
phenomena have to be considered in ingot casting, in
continuous casting and in electroslag remelting (ESR)
processes etc., many more articles, conference papers,
books could be suggested, that deal with the numerical
stability, accuracy and reliability of the mathematical
models in this field.

Multiphase model description and
modelling questions
For modelling solidification and melting phenomena
during metallurgical processes using the multiphase
approach, the conservation laws are described by integral
or partial differential equations. The mass, momentum,
energy, species and other problem dependent additional
transport equations can be considered exact, but solving
them analytically, without taking into account any
assumptions, is impossible for most cases of engineering
interest. This is the reason for setting up mathematical
models of the physical problems and solving the
corresponding partial differential equations with numer-
ical methods. Even if the model is nearly exact, some
properties of the metallurgical process are not exactly
known. For example, all fluid properties depend on
temperature, species concentration and pressure, however
these dependences are neglected in some special cases.

A multiphase solidification and melting model was
developed for the binary system. Three phases were
considered, namely liquid phase l, columnar dendrite
trunks c and equiaxed grains e. The morphology of the
equiaxed grains was approximated by ideal spheres. The
growth velocity of equiaxed grain were analytically
derived4–6 as

vRe
~

2Dl

de

: c�l {cl

c�l {c�e
, (1)

where Dj is the diffusion coefficient, de is the diameter
of equiaxed grains, c�l and c�e are the equilibrium

species mass fractions at the liquid/solid interface. The
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momentum equation for the columnar phase was not
solved, because the dendrite tip was tracked by an
explicit type algorithm using the LGK4–6 model. The
distance between two cylinder centres represents the
primary dendrite arm spacing l1. The growth velocity of
columnar dendrite trunks was analytically derived4–6 as

vRc
~

2Dl

dc

: c�l {cl

c�l {c�c
:ln{1 dmax

dc

� �
, (2)

where dmax is the maximal diameter available for
cylindrical growth, dc is the diameter of columnar
dendrite trunks, and c�c is the equilibrium mass fraction

of the columnar phase at the liquid/solid interface.
Considering a hexagonal dendrite arrangement with
dendrite arm spacing l1, the maximal diameter can be
chosen as dmax51?05l1. The mass transfer rate from the
liquid to the equiaxed phase was defined as

Mle~vRe
:(n:p:d2

e ):re
:fimp, (3)

where re is the density of the equiaxed phase, fimp is the
impingement factor.15 The mass transfer rate from the
liquid to columnar phase was defined as

Mlc~vRc
: 2

ffiffiffi
3
p

:p:dc

3l2
1

 !
:rc
:fimp, (4)

where rc is the density of the columnar phase, Vtip is the
tip velocity, and Rtip is the tip radius. The impingement
factors are different for the spherical and cylindrical
growth. An Avrami-type factor was used (fimp5fl) for
equiaxed solidification. The impingement factor for
columnar solidification was assumed as

fimp~
1,0vdcfl1,

1{ dc{l1

dmax{l1
,l1vdcfdmax

(
(5)

After computing the mass transfer rates, the multi-
phase Eulerian–Eulerian approach is applied to con-
sider the mass, momentum, enthalpy and species
conservations. Thermal and solutal buoyancy were
modelled by using the Boussinesq approach. The
nucleation process was modelled by the Oldfield4–6

conservation equation which suggests a continuous
rather than a discrete distribution of nucleation sites.
Since in parallel analytical solutions for describing and
modelling complex metallurgical processes do not
exist, we have to take into account the errors of the
underlying numerical methods as well as the modelling
errors based on the assumptions. The conservation
equations are reduced to solve linear or non-linear
algebraic equations using discretisation methods. On
the one hand, the discretisation techniques cause dis-
cretisation errors as defined by the difference between
the supposed exact solution of the governing equations
and the exact solution of the discrete approach. On the
other hand, an iterative method is often used, instead
of a direct method, for solving the algebraic equation
system, which means that we have to take into account
the iteration errors. The iteration error is defined as the
difference between the exact and the iterative solutions
of the discretised algebraic equation system. The direct
solution of the algebraic equation system is often
uneconomical. Therefore, it is necessary to define a
convergence criterion to stop the iterative process of
the numerical solution. Even if the solution process is

convergent and we iterate long enough, we never
obtain the exact solution of the discretised equations.14

The computer CPUs also have a so-called round-off
error due to the finite arithmetic precision, but it does
not become significant until the solution error is close to
the machine precision. Even if the governing equations
are implemented correctly, it is possible to obtain
different results with different implementation strategies.
The efficiency and accuracy of the numerical methods,
implementation strategies and computer codes can be
further improved. One of the most significant issues to
increase the accuracy of the numerical solution is the
grid refinement where it is necessary.

The benchmark ingot
Integral or partial differential equations, which describe
the physical phenomena of metallurgical processes,
require accurate initial and boundary conditions.
These are often difficult to specify exactly as well, which
means that we need further assumptions. Although, the
governing equations can be exact in certain cases, but
the approximations at the boundary can also have an
effect on the solution. The geometry can also be difficult
to represent exactly, therefore it is necessary further
assumptions about that details which make difficult to
generate an appropriate grid.

The solidification of a binary ‘steel’ ingot (Fe–
0?34 wt-%C) with a relatively small size (diameter:
66 mm, height: 170 mm) was set up for multiphase
solidification simulations.5,6 The heat transfer coefficient
between the ingot and the die is h5700 W m22 K21, and
air flow has been taken into account at the top, where
the heat transfer coefficient is h5100 W m22 K21. The
number of grid cells has been increased from 180 to 4300
in half of the symmetrical domain (see Fig. 1). The
systematic grid refinement is a very important part of
the verifying process, because it helps to reduce the
discretisation errors and to define an optimal grid
size starting from which the results do not change
significantly.

The finite volume method (FVM) based FLUENT-
ANSYS v6?3 CFD code was used for solving the
conservation equations of the Eulerian–Eulerian multi-
phase model. The FLUENT-ANSYS v6?3 commercial
software does not have built-in multiphase solidification
and melting module for simulating columnar to
equiaxed transition. Therefore, the equations (1)–(5)

1 a 180 grid cells; b 1316 grid cells; c 2780 grid cells; d

4300 grid cells
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equation system for numerical solution.

Results and discussion
The physical phenomena of the multiphase solidification
and melting related metallurgical processes are always
grid independent, because of their invariant nature. For
modelling, a grid is required to solve the governing
equations on a finite domain. Therefore, the numerical
solution and the implementation can be grid dependent.
The influence of the grid size on numerical integration
accuracy was investigated by Runge16 at the beginning
of the 20th century. Recently, Roache17 (1994) and
Ferziger and Perič18 (1996) have given more details
about the estimation of discretisation errors. The
simplest way is the Richardson extrapolation which
assumes that computation can be done on grids
sufficiently fine that monotone convergence is obtained.
The order of discretisation error ~pp can be computed
from the results on three or more consecutive grids when
all grids are fine enough

~pp~log
Qi

2~hh
{Qi

4~hh

Qi
~hh
{Qi

2~hh

 !
:log{1~rr, (6)

where ~rr is a grid density factor, Qi
~hh

is the solution in the

ith cell (e.g. volume fraction, liquid velocity, macrose-

gregation etc.) on a grid with an average spacing ~hh. The

Qi
~hh

is chosen to be mixture concentration, Qi
~hh
~ci

mix. The

mixture concentration represents the formation of
macrosegregation at the end of the solidification. The
discretisation error can approximately be estimated as
follows14

e
^i

~hh%
Qi

~hh
{Qi

2~hh

~rr~pp{1
, (7)

and in order to quantify the overall error, the maximum
norm of the discretisation error is

e
^

~hh

��� ���
?

: ~ max
1ƒiƒn

e
^i

~hh

��� ���: (8)

Note that other norms can be used as well. The estimation
of the numerical errors is required to obtain numerically
reliable macrosegregation patterns and to know the
difference between numerically predicted and measured
results. The systematic grid refinement is necessary by
factor of ~rr to reduce the discretisation errors in each cells.
It helps to define an optimal grid size starting from which
the results do not change significantly. An average grid

size ~hh and the mixture concentration Qi
~hh
~ci

mix in each grid

cell are required to compute the order of discretisation
error ~pp based on the equation (6). After knowing the ~pp
values, the discretisation error can be estimated by
equation (7) in each grid cell. In order to quantify the
overall error, hereby the maximum norm of the discretisa-

tion error e
^

~hh

��� ���
?

was taken into account in equation (8).

An example of how to compute the discretisaton error
based on the final macrosegregation pattern can be seen in
Table 1. This example considers the Qmax

cmix maximum

values of the macrosegration pattern to show how to use

equation (6)–(8), however the e
^

~hh

��� ���
?

values of maximum

norm are valid for the computational domain in
Table 1. The number of grid cells has been increased
from 180 to 4300 to define an optimal grid size, to
prove the reliability of model implementation. When
we have a coarse grid with 180 cells, one can see that
the numerically predicted bottom zone of negative
segregation, which is caused by the sedimentation of
equiaxed grains, is different from the other simulations
when the number of grid cells was increased by a factor
of ~rr (see Fig. 1). The coarse grid also can cause
different positive segregation patterns at the ingot top.
This positive segregation is explained by convection of
segregated melt from the ingot center, but when we do
not have a sufficient number of grid cells, the flow
simulation and the numerical accuracy can be unreli-
able. With increasing the number of grid cells, the ‘A’
and ‘V’ type segregation patterns have been appeared
which were observed in the classical experiments19,20 as
well. The results show in Fig. 1 that the macrosegrega-
tion pattern does not change significantly above a well-
chosen number of grid cells, at least from 2780 cells in
our case. Therefore, the simulation can predict grid
independent numerical solution, which means that
the final macrosegregation pattern is numerically
reliable based on the model assumptions and solution

Table 1 Estimation of the discretisation error based on the final macrosegregation patterns

aj [cells] ~hh [m] Qmax
cmix [kg/kg] ~rrj

1 ~ppj
1

e
^

~hh

��� ���
?

1

a15180 0.0065933 0.004066002 ~rr1~2 ~pp1%9:693486 <1.00261026

a251316 0.0023547 0.004894002 ~rr2~a2=a1%7:31 ~pp2%3:377414 <1.20961029

a352780 0.0016483 0.004894010 ~rr3~a3=a1%15:4 ~pp3%2:454658 <1.20961029

a454300 0.0013186 0.004895000 ~rr4~a4=a1%23:8 ~pp4%2:117282 <1.20961029

2 Predicted macrosegregation patterns using different

size of grid; the results show, the pattern does not

change significantly above a well-chosen number of

grid cells; the middle value of the grey scale is the

initial concentration
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accuracy. The numerical solutions are always approx-
imate solutions, therefore the error estimations play an
important role in the explanation of the simulation
results. According to Ferziger and Perič, the best
measure of the efficiency of a solution method is the
computational effort required to achieve the desired
accuracy.14

Summary
A multiphase model was developed by Ludwig et al.4

and Wu et al.5,6 which was briefly described in this
paper. The model implementation provides a good
opportunity to perform a grid study for macrosegrega-
tion in ingot casting. The number of grid cells has been
increased from 180 to 4300 to define an optimal grid
size, to prove the reliability of model implementation.
The results show, the macrosegregation pattern does not
change significantly above a well-chosen number of grid
cells, at least from 2780 cells in our case. Therefore, the
proposed model can predict grid independent numerical
solution, which means that the final macrosegregation
pattern is numerically reliable based on the model
assumptions and solution accuracy.
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