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Abstract

Part I of this two part investigation presents a modified volume-averaged equiaxed solidification model which accounts for nucleation,
globular grain growth, globular-to-dendritic transition, dendritic growth, formation of extra- and interdendritic eutectic, grain transport
and melt convection, and their influence on microstructure and macrosegregation. Globular grain growth is governed by diffusion
around a spherical grain. For the dendritic growth, a ‘‘natural” grain envelope smoothly enclosing the primary and secondary dendrite
tips is assumed to separate the interdendritic melt from the extradendritic melt. The solid dendrites and interdendritic melt, confined in
the ‘‘natural” grain envelope, combine to form a dendritic grain. Two ‘‘hydrodynamic” phases are considered: the extradendritic melt
and the equiaxed grains; and three thermodynamic phase regions are distinguished: the solid dendrites, the interdendritic melt and
the extradendritic melt. The velocities of the hydrodynamic phases are solved with a two-phase Eulerian approach, and transport of
the mass and solute species of each thermodynamic phase region are considered individually. Growth kinetics for the grain envelope
and the interdendritic melt solidification are implemented separately. Simplification of the grain dendritic morphology and treatment
of the non-uniform solute distribution in the interdendritic melt region are detailed. Illustrative modeling results and model verification
are presented in Part II.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Modeling equiaxed solidification at the process scale is
still a challenging topic, owing to the complexity of global
multiphase transport phenomena coupled with microscopic
solidification kinetics. One of the most promising models
for equiaxed dendritic solidification, the micro-macro
model or solute diffusion model, was proposed by Rappaz
and Thévoz (RT) [1,2] and further improved upon by many
authors [3–12]. The basic idea behind the RT model is to
solve the global energy conservation equation by consider-
ing the solidification kinetics that occur at the microscopic
scale.
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In the RT model, the nucleation of the grain and its den-
dritic growth are assumed to occur in an ‘‘isolated spherical
cell”, which is also regarded as an isolated representa-
tive volume. No mass or species exchange is considered
between the neighboring representative volumes. The
spherical cell/volume is subdivided into three distinct ther-
modynamic phase regions: the solid dendrite (s), the inter-
dendritic melt (d) enclosed within the envelope of the grain,
and the extradendritic melt (‘) outside the envelope. The
envelope of the grain is set as a fictitious spherical surface
‘‘stretched” by the primary dendritic tips. The evolution of
the grain envelope is determined by the tip growth kinetics.
A uniform interdendritic melt is assumed, and its concen-
tration is identical to the thermodynamic equilibrium con-
centration determined by the local temperature and the
thermodynamic phase diagram. The solidification of the
interdendritic melt within the grain envelope is deduced
rights reserved.
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Nomenclature

c0 initial (nominal) composition of alloy (wt.%)
cE eutectic concentration (wt.%)
ce average concentration in equiaxed grains (wt.%)
�cenv average concentration at grain envelope (wt.%)
c‘; cd; cs species concentrations (wt.%)
c�‘ ; c

�
s equilibrium concentration at s–d interface

(wt.%)
cref
‘ reference concentration (wt.%)

CD
‘e diffusive species exchange between extradendrit-

ic liquid and equiaxed grains (kg m�3 s�1)
CM
‘e species exchange at ‘–e interface due to envelope

growth (kg m�3 s�1)
CM
‘d;C

M
‘s species transfer from ‘-phase to d- and s-phases

by phase change (kg m�3 s�1)
CD
‘d;C

D
‘s species transfer from ‘-phase to d- and s-phases

by diffusion (kg m�3 s�1)
CM

ds species transfer from d-phase to s-phase by
phase change (kg m�3 s�1)

CD
ds species transfer from d-phase to s-phase by dif-

fusion (kg m�3 s�1)
cmix mix concentration (l)

c‘p; c
d
p; c

s
p; c

e
p specific heat (J kg�1 K�1)

D‘;Ds diffusion coefficient (m2 s�1)
de average diameter of e-phase (equiaxed grain

diameter) (m)
d2 diameter of second dendrite arm (m)

F
*

Be buoyancy force of equiaxed phase (kg m�2 s�2)
F
*

B‘ thermal buoyancy force of extradendritic melt
(kg m�2 s�2)

f‘; fs; fd volume fraction of ‘-, s- and d-phases (l)
fe ¼ fs þ fd volume fraction of e-phase (l)
f e

s ; f
e
d volume fraction of s- and d-phase regions within

e-phase (l)
f c

e equiaxed grain packing limit (l)

f total
Eu ; f extra

Eu ; f intern
Eu volume fraction of total, extra- and

interdendritic eutectic phases (l)
g
*

gravity (m s�2)
H� volume heat transfer coeff. between extraden-

dritic melt and grain envelope (W m�3 K�1)
h‘; he enthalpy (J kg�1)

href
‘ ; h

ref
e reference enthalpy (J kg�1)

J ‘ species diffusive flux in extradendritic melt (m s�1)
J s species diffusive flux in interdendritic solid (m s�1)
K‘eð¼ Ke‘Þ liquid-equiaxed drag coefficient (kg m�3 s�1)
k solute partitioning coefficient at the s–d inter-

face (l)
ke; ks; kd; k‘ thermal conductivity (W m�1 K�1)
L latent heat of solidification (J kg�1)
ld diffusion length in interdendritic melt (m)
l‘ diffusion length in extradendritic melt (m)
ls diffusion length in interdendritic solid (m)

M ‘eð¼ �M e‘Þ liquid-equiaxed net mass transfer rate
(kg m�3 s�1)

Mds interdendritic solidification rate (kg m�3 s�1)
M ‘s;M ‘d mass transfer rate from extradendritic melt to

s- and d-phases (kg m�3 s�1)
M slope of liquidus in phase diagram (K)
N e equiaxedgrainproductionratebynucleation(m�3

s�1)
n equiaxed grain number density (m�3)
nmax maximum equiaxed grain density, or maximum

available nucleation sites in simultaneous nucle-
ation law (m�3)

p pressure (N m�2)
QD
‘eð¼ �QD

e‘Þ energy transfer between extradendritic li-
quid and equiaxed (J m�3 s�1)

QM
‘ ;Q

M
e energy source terms to treat the latent heat (J m
�3 s�1)

Re radius of grain envelope (m)
Rf maximum radius of a grain envelope (m)
SM

e surface concentration of the equivalent sphere
(m�1)

SD
e diffusion surface concentration of the natual

grain contour (m�1)
Ss s–d interface concentration (m�1)
T ; T ‘; T e temperature (K)
T E eutectic temperature (K)
T ref
‘ reference temperature for thermal buoyancy

force (K)
T ref reference temperature for enthalpy definition (K)
DT constitutional undercooling (K)
DT N undercooling for maximum grain production

rate (K)
DT r Gaussian distribution width of nucleation law (K)
t time (s)
Dt time step (s)
U
*

D
‘eð¼ �U

*
D
e‘Þ liquid-equiaxed momentum change due to

drag force (kg m�2 s�2)
U
*

M
‘e ð¼ �U

*
M
e‘ Þ liquid-equiaxed momentum exchange due

to grain envelope growth (kg m�2 s�2)
u
*
‘; u
*

e velocity vector (m s�1)
D u
*

relative velocity between melt and grains (m s�1)
vglob growth velocity of globular grain (m s�1)
venv growth velocity of volume-equivalent spherical

envelope (m s�1)
vtip growth velocity of dendrite tips (m s�1)
vsd s–d interface growth velocity (m s�1)
vRe

growth velocity of grain envelope (m s�1)
b2 a constant (�1) in Eq. (33) (l)
bT thermal expansion coefficient (K�1)
bc solutal expansion coefficient (l)
bs solidification volume shrinkage (l)
Ue

Avr Avrami factor for grain impingement (l)

5622 M. Wu, A. Ludwig / Acta Materialia 57 (2009) 5621–5631



Us
Avr Avrami factor for interdendritic solid impinge-

ment (l)
Uenv shape factor of dendritic grain (l)
Usph sphericity of dendritic grain envelope (l)
C Gibbs–Thomson coefficient (m K)
k2 secondary dendrite arm space (m)
l‘; le viscosity of liquid and (effective) equiaxed phase

(kg m�1 s�1)
lmix viscosity of equiaxed-liquid mixture (kg m�1 s�1)
q‘; qd; qs

density of thermodynamic phases (kg m�3)

qe average density of equiaxed phase (kg m�3)
qref
‘ ; q

ref
e reference densities of extradendritic melt and

equiaxed phase (kg m�3)
��s‘;��se stress–strain tensors (kg m�1 s�1)
X supersaturation (l)

Subscripts

d interdendritic melt
e equiaxed grain
‘ extradendritic melt
s interdendritic solid
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from the species and energy balances. Although the above
model casts light on many experimental facts, such as the
formation of extradendritic and interdendritic eutectics,
the recalescence, etc., it fails to include melt convection
and grain sedimentation. Another drawback is the assump-
tion of the uniform interdendritic melt. In multicomponent
systems, the concentrations at the dendrite tip positions
must be distinguished from the concentrations within the
interdendritic region [8]. Even in the binary system, this
assumption would cause error in the prediction of quanti-
ties such as the depth of recalescence, especially for
coarse-grained alloys [1].

A model which accounts for melt convection and grain
sedimentation was first proposed by Wang and Beckermann
(WB) [9–12]. In the WB model, the nucleation and dendritic
growth events are also assumed to occur in an ‘‘enclosed
spherical representative volume”, but it is not considered iso-
lated. The mass and species exchanges between the volumes
by convection and diffusion are included. Similar to the RT
model, three different phase regions (s, d and ‘) are distin-
Fig. 1. Schematic of the equiaxed dendritic solidification and dendritic morpho
scale; (b) construction of the ‘‘control volume element” by ignoring the local gr
simplify the grain morphological details.
guished, and a similar idea is employed to handle the growth
kinetics for the grain envelope and the solidification of the
interdendritic melt. WB also proposed a treatment for the
non-uniform concentration in the interdendritic region [9],
but this was not implemented in later models [10–12] for
equiaxed solidification with convection and grain sedimenta-
tion. They also introduced the concept of flow partitioning
between the inter- and extradendritic melt to handle the
interdendritic flow. With this concept, it is only necessary
to account for two velocity fields: the velocity of the s-phase
and the velocity of the mixture of inter- and extradendritic
melts; and the slow flow of the interdendritic melt in relation
to the solid dendrites can also be considered. This slow inter-
dendritic melt flow might be important in regions where
there is a high volume fraction of grains when the grains
impinge upon one another and the volume fraction of the
extradendritic melt approaches zero. A drawback of this
flow partitioning approach is that a set of additional supple-
mentary correlations with empirical parameters are required
to determine a flow partitioning tensor.
logy simplifications: (a) melt convection and grain movement at the process
ain size distribution; (c) use of volume equivalent sphere and solid core to



Table 1
Volume-averaged conservation equations of the Eulerian approach for globular/dendritic equiaxed solidification.*

Grain transport: n @

@t
nþr � u

*
en

� �
¼ N e ð1Þ

Mass conservations: f‘; fe; fs @

@t
ðf‘q‘Þ þ r � ðf‘q‘u

*
‘Þ ¼ M e‘ ð2Þ

@

@t
ðfeqeÞ þ r � ðfeqe u

*
eÞ ¼ M ‘e ð3Þ

where M ‘e ¼ M‘s þM ‘d and qe ¼ f e
s qs þ f e

d qd

@

@t
ðfsqsÞ þ r � ðfsqs u

*
eÞ ¼ Mds þM ‘s ð4Þ

Momentum conservations: �u‘; �ue; p @

@t
ðf‘q‘u

*
‘Þ þ r � ðf‘q‘u

*
‘ � u

*
‘Þ ¼ �f‘rp þr � s‘ þ F

*

B‘ þ U
!

M
e‘ þ U

!
D
e‘ ð5Þ

@

@t
ðfeqe u

*
eÞ þ r � ðfeqe u

*
e � u

*
eÞ ¼ �ferp þr � se þ F

*

Be þ U
!

M
‘e þ U

!
D
‘e ð6Þ

where s‘ ¼ l‘f‘ðr � u
*
‘ þ ðr � u

*
‘ÞTÞ and se ¼ lefeðr � u

*
e þ ðr � u

*
eÞTÞ

Species conservations: c‘; ce; cs
@

@t
ðf‘q‘c‘Þ þ r � ðf‘q‘u

*
‘c‘Þ ¼ CM

e‘ þ CD
e‘ ð7Þ

@

@t
ðfeqeceÞ þ r � ðfeqe u

*
eceÞ ¼ CM

‘e þ CD
‘e ð8Þ

where CM
‘e ¼ CM

‘d þ CM
‘s and CD

‘e ¼ C D
‘d þ CD

‘s

@

@t
ðfsqscsÞ þ r � ðfsqs u

*
ecsÞ ¼ CM

ds þ CD
ds þ CM

‘s þ CD
‘s ð9Þ

Enthalpy conservations: h‘; he
@

@t
ðf‘q‘h‘Þ þ r � ðf‘q‘u

*
‘h‘Þ ¼ r � ðk‘r � T ‘Þ þ QM

‘ þ QD
e‘ ð10Þ

@

@t
ðfeqeheÞ þ r � ðfeqe u

*
eheÞ ¼ r � ðker � T eÞ þ QM

e þ QD
‘e ð11Þ

where h‘ :¼
R T ‘

T ref
c‘pdT þ href

‘ and he :¼
R T e

T ref
ce

pdT þ href
e ,

ke :¼ f e
s ks þ f e

d kd and ce
p :¼ f e

s cs
p þ f e

d cd
p

* Note that these 11 partial differential equations are coupled via the transfer terms gathered in Table 2. Together with the fact that f‘ and fe add up to
one, Eqs. (1)–(11) are used to compute the 12 quantities: n; f‘; fe; fs; �u‘; �ue; p; c‘; ce; cs; h‘; he. Here, a conserved vector quantity is considered to be a single
variable.
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The model proposed in the current paper is a modifica-
tion and combination of the previous globular and den-
dritic solidification models. Treatment of flow and grain
sedimentation is a continuation of the globular equiaxed
model by the authors [13,14]. The current paper is limited
to equiaxed solidification, but the extension to mixed
columnar–equiaxed solidification [15–17] would be
straightforward.

2. Model description and assumptions

As depicted in Fig. 1, equiaxed solidification involves
physical phenomena happening at different length scales.
Global transport processes occurring at the process scale
can be solved with a Eulerian approach based on discretized
control volume elements. Each control volume element may
contain a number of equiaxed grains. Quantities used to
describe nucleation and growth, which occur at a micro-
scopic scale, can be integrated and volume-averaged to for-
mulate source (or exchange) terms to close corresponding
transport equations. Note that this volume-averaged
approach assumes that all grains within a certain control
volume element have the same average size, morphology,
velocity, and physical and chemical properties.

2.1. Phase definition and global transport phenomena

(1) Two ‘‘hydrodynamic” phases are considered: extra-
dendritic melt (‘) and equiaxed grains (e). Their respective
volume fractions, f‘ and fe, sum to one and the velocities,
u
*

e and u
*

e, are calculated with a two-phase Eulerian
approach (Eqs. (5) and (6) in Table 1).

(2) According to the RT model [1,2], for dendritic solidi-
fication three different thermodynamic phase regions are dis-



Table 2
Mass and species transfer terms.*

For globular grains For dendritic grains

Mass transfer ð‘! dÞ: No d-phase present
M ‘d ¼ vRe � SM

e � qd ð12Þ

Species transfer ð‘! dÞ by mass transfer:
CM
‘d ¼ �cenv �M ‘d ð13Þ

Species transfer ð‘! dÞ by diffusion:
CD
‘d ¼ �q‘ � SD

e � J ‘ ð14Þ

with J ‘ ¼ D‘ � ð�cenv � c‘Þ=l‘, and l‘ ¼ D‘=vRe

Mass transfer ð‘! sÞ: M ‘s ¼ vRe � SM
e � qs ð15Þ No solid forms from extradendritic melt

Species transfer ð‘! sÞ by mass transfer: CM
‘s ¼ c�s �M ‘s ð16Þ

Species transfer ð‘! sÞ by diffusion (solid back diffusion): CD
‘s ¼ qs � SD

e � J s ð17Þ

with J s ¼ Ds � ðc�s � csÞ=ls and ls ¼ de=2
Mass transfer ðd! sÞ: No d-phase present Mds ¼ vsd � Ss � qs ð18Þ
Species transfer ðd! sÞ by mass transfer:

CM
ds ¼ c�s �Mds ð19ÞSpecies transfer ðd! sÞ by diffusion (solid back diffusion):

CD
dsð¼ �CD

sdÞ ¼ qs � Ss � J s ð20Þ

with J s ¼ Ds � ðc�s � csÞ=ls and ls ¼ fs � k2=2

* Note that all transfer terms have to be symmetrical e.g., M ‘d ¼ �Md‘;CM
‘d ¼ �CM

d‘, etc.

Table 3
Momentum exchange and other closure laws for the conservation equations.

Nucleation
N e ¼

dDT
dt
� nmaxffiffiffiffiffiffi

2p
p

� DT r

� e�1
2�

DT�DT N
DTr

� �2

ð21Þ

Momentum exchange ð‘$ eÞ by mass transfer: ~U M
‘e ¼~u� �M ‘e

~UM
e‘ ¼ �~U M

‘e ð22Þ~u� ¼ u
*
‘ solidification

u
*

e re�melting

�

Momentum exchange ð‘$ eÞ by drag force: ~U D
‘e ¼ K‘e � ð~u‘ �~ueÞ ~UD

e‘ ¼ �~U D
‘e ð23Þ

K‘e : drag coefficient [13]
Buoyancy force:

F
*

B‘ ¼ f‘ � qref
‘ � ½1þ bT � ðT ref

‘ � T ‘Þ þ bc � ðcref
‘ � c‘Þ� � g

* ð24Þ

F
*

Be ¼ fe � qref
e � ð1þ bs � f e

s Þ � g
* ð25Þ

where bs ¼ ðqs � q‘Þ=qref
e

Enthalpy exchange ð‘$ eÞ by heat transfer: QD
‘e ¼ H� � ðT ‘ � T eÞ QD

e‘ ¼ �QD
‘e ð26Þ

H � ¼ 108 W=m3=K (Infinite)

Latent heat: QM
‘ ¼ �h‘ �M ‘e þ L �Mds � f‘;

QM
e ¼ he �M ‘e þ L �Mds � fe ð27Þ

here h‘ ¼ he, latent heat is treated explicitly by source terms
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tinguished: solid dendrites, interdendritic melt and extraden-
dritic melt, indexed s, d and ‘. Their volume fractions sum to
one: fs þ fd þ f‘ ¼ 1. At the s–d interface which separates
the solid dendrite (s) from the interdendritic melt (d), ther-
modynamic equilibrium holds, and solute partitioning
occurs. The interdendritic melt (d) is separated from the
extradendritic melt (‘) by a ‘‘natural” grain envelope. The
construction of the ‘‘natural” grain envelope is detailed in
Section 2.2. The volume fraction of the s-phase within a grain
envelope is given by f e

s ¼ fs=fe, and the volume fraction of
d-phase within a grain envelope by f e

d ¼ fd=fe. In the case
of globular solidification, fd ¼ 0 and fe ¼ fs.



Fig. 2. The shape of the dendritic grain is simplified by an ‘‘equivalent
sphere”. This ‘‘equivalent sphere” has the same volume as the ‘‘natural”
contour around the primary and secondary dendrite tips of the grain
(dashed line). The ‘‘natural” contour of the grain is also called a ‘‘natural”
grain envelope.

Fig. 3. Model of the species distribution in different phase regions of a
growing dendritic grain. The dotted lines represent the species distribution
in the different phase regions, and the solid lines represent the averaged
concentrations used in the model.
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(3) Each control volume contains the extradendritic melt
with its average concentration c‘, and may contain several
grains (Fig. 1b). For the extradendritic melt, mass and spe-
cies exchange between the neighboring control volume ele-
ments by diffusion and/or melt convection are considered.

(4) The relationships between the thermodynamic and
the hydrodynamic phases are as follows. The thermody-
namic ‘-phase is identical to the hydrodynamic ‘-phase;
the thermodynamic s- and d-phases sum up to the hydro-
dynamic e-phase, i.e., fs þ f d ¼ fe. Both d- and s-phases
share the same velocity field, u

*
e.

1

(5) The transport equations for enthalpy, mass, momen-
tum, species are solved for each hydrodynamic phase
(Table 1). In addition, the conservation equation for the
grain number density is also solved (Eq. (1) in Table 1).
The model using a two-phase Eulerian approach including
grain growth, convection and grain movement has been
described elsewhere [13,14].

(6) The volume fraction of the equiaxed phase fe is
calculated via mass conservation for the hydrodynamic e-
phase according to the grain growth kinetics described in
Section 4.1. The solid volume fraction fs is obtained by solv-
ing an additional transport equation which accounts for
solidification of the interdendritic melt (Eq. (4) in Table 1).

(7) c‘ and ce are obtained by solving the species conser-
vation equation for each hydrodynamic phase (Eqs. (7) and
(8) in Table 1). Here, ce represents the average solute con-
centration within the corresponding grains. In addition, the
average concentration of the solid is calculated by solving
the conservation equation for cs (Eq. (9) in Table 1).
Knowing f e; fs; ce and cs from solving the corresponding
conservation equation, the average concentration of the
interdendritic melt cd can be estimated using the relation
1 This assumption might appear too restrictive, especially when consid-
ering feeding flow close to the end of solidification. However, in the
present approach extradendritic melt can still flow to feed solidification,
even above the grain packing limit.
qefece ¼ qdfdcd þ qsfscs. This differs from previous den-
dritic solidification models [1–5,10–12], where it was
assumed that the averaged interdendritic melt was identical
to the thermodynamic equilibrium concentration, cd ¼ c�‘ .

(8) The densities of all phases are assumed to be con-
stant and are not equal. The Boussinesq approximation is
used to model thermo-solutal convection and grain sedi-
mentation [18].

(9) Two enthalpy equations are solved to calculate T e

and T ‘ (Eqs. (10) and (11) in Table 1). However, a large
(infinite) volume heat exchange coefficient between both
hydrodynamic phases is applied to level out any tempera-
ture differences ðT ‘ � T eÞ [13,15]. Mixture properties,
ke; ce

p and qe, composed of those of the solid dendrite
and the interdendritic liquid are used for the e-phase.
Latent heat is explicitly modeled with additional source
terms (Eq. (27) in Table 2).

2.2. Microscopic phenomena

(1) A three-parameter heterogeneous nucleation law
(Eq. (21) in Table 3) is used to model the nucleation of
equiaxed grains [13,19]. This is the source term for the con-
servation equation of grain number density n (Eq. (1) in
Table 1). From the average grain volume fe=n, an average
grain radius is calculated via 4=3pR3

e ¼ fe=n.
(2) An equiaxed grain starts to grow with globular

(spherical) morphology, therefore, a Zener-type diffusion
field for steady-state growth of a sphere [15,16] is applied
in order to calculate the grain growth velocity vglob. As soon
as the globular-to-dendritic transition (GDT) occurs, the
Lipton–Glicksman–Kurz (LGK) tip growth kinetics
[20,21] is applied to estimate the evolution of the grain
envelope venv. GDT is assumed to occur when venv exceeds
vglob (maximum growth hypothesis).
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(3) As soon as GDT occurs, the appearance of interden-
dritic melt is considered, and the dendritic morphology
within a grain is simplified by the ‘‘equivalent sphere” con-
cept. An ‘‘equivalent sphere” consists of a solid core and an
interdendritic melt shell (Fig. 2) with a volume equal to the
volume enclosed by the natural contour of an actual grain.
The growth velocity of the equivalent sphere venv is related
to the primary dendrite tip growth velocity vtip by a mor-
phological parameter Uenv (Section 4.1). Knowing the sur-
face concentration of the equivalent spheres S M

e , the mass
transfer rate from the ‘-phase (extradendritic melt) to the e-
phase (equiaxed grains) can be calculated. However, it
must be noted that the use of SM

e would underestimate
the species transfer by diffusion from the inter- to the extra-
dendritic melt, because the surface area of the natural con-
tour of a grain is larger than the surface area of the
equivalent sphere. To handle this discrepancy, a second
morphological parameter Usph is introduced to determine
the ‘‘true” surface area of the ‘‘natural” contour of the
grain SD

e (see Section 4.1).
(4) The concentration profiles in the different phase

regions are shown schematically in Fig. 3. The Eulerian
volume-averaged approach accounts only for the averaged
concentration of each phase, namely cs; cd; c‘. Thermody-
namic equilibrium is assumed at the s–d interface, where
interface kinetics and curvature effects are neglected. As a
result, the equilibrium concentration at the s–d interface,
c�‘ , and that at the dendrite tips are assumed to be compa-
rable. At present, the current model is limited to binary sys-
tems. The interface concentration c�‘ is related to
temperature T by the corresponding phase diagram infor-
mation. The difference between the equilibrium concentra-
tion at the s–d interface, c�‘ , and the averaged interdendritic
melt concentration, cd, is the driving force for solidification
of the interdendritic melt.

(5) The non-uniform interdendritic solute distribution is
modeled following the work of WB [9]. An average concen-
tration at the grain envelope, �cenv, is calculated from the
corresponding diffusion flux balance at the grain envelope
(see Section 4.3, Eq. (44)). Based on this average envelope
concentration, �cenv, the species transfer from the ‘� to the
e-phase due to grain growth and diffusive flux is calculated.
Note that, if the diffusion length of the extradendritic melt
is much larger than the diffusion length of interdendritic
melt ðl‘ 	 l dÞ, the generally used assumption of
�cenv ¼ c d would be valid.

(6) Diffusion adjacent to dendrite tips is the governing
mechanism for the growth of the primary dendrite tips,
i.e., the evolution of the grain envelope, while diffusion
adjacent to the s–d interface in the interdendritic melt is
the governing mechanism for solidification of the interden-
dritic melt. The growth of the grain envelope is modeled
either according to the Zener-type formulation for the
globular growth or according to the LGK tip growth kinet-
ics for the dendritic growth. The diffusion length in the
interdendritic region is thought to scale with the secondary
arm space k2 (see Section 4.2).
(7) For simple binary eutectic alloys, the primary phase
solidification ends with the formation of eutectic. For
alloys with a small volume fraction of interdendritic eutec-
tic, the formation of eutectic has little influence on the
global enthalpy conservation, thus release of eutectic latent
heat is neglected. However, as soon as the temperature
drops below the eutectic point T E, the remaining melt
solidifies as eutectic, and the primary phase solidification
process terminates. As we distinguish between extraden-
dritic and interdendritic melt, we also distinguish between
extradendritic eutectic f extra

Eu and interdendritic eutectic
f intern

Eu .

3. Conservation equations

The eleven ‘‘transport” quantities, n, f‘; fe; fs; u
*
‘; u
*

e;
c‘; ce; cs; h‘ and he (i.e., T ‘; T eÞ and pressure p, are
obtained by solving the conservation equations together
with the condition fe þ f‘ ¼ 1, which are summarized in
Table 1. Here, a conserved vector quantity is counted
only as a single variable. All phases share a single pres-
sure field p. The pressure correction equation is obtained
from the sum of the normalized mass continuity equations
using the ‘‘Phase Coupled SIMPLE (PC-SIMPLE)” algo-
rithm [22]. The mass and species transfer terms used to
describe grain growth and solidification are summarized
in Table 2. Their derivation is detailed in Section 4. Fur-
ther closure laws described in previous publications [13–
16] are listed in Table 3. The mixture concentration cmix,
used as an indicator of macrosegregation, is calculated
by the species volume-averaged over all phases [13,14].
To define an artificial ‘‘viscosity” of the equiaxed phase
le (which is needed for the corresponding momentum
conservation Eq. (6) in Table 1), the mixing rule
lmix ¼ f‘l‘ þ fele is applied, where the mixture viscosity
lmix is taken from experimental measurements [23]. As
long as fe is small, le is in the same order of l‘. As fe

approaches the packing limit ðf c
e ¼ 0:637Þ; le increases

to infinity. Beyond f c
e , the e-phase becomes rigid, while

the extradendritic melt is still able to penetrate the voids
of the closely packed grains.

4. Growth kinetics

4.1. Grain growth

The rate of mass transfer from the ‘-phase (extraden-
dritic melt) to the e-phase (equiaxed grains) is deter-
mined by the growth velocity vRe and the surface
concentration of the volume-equivalent spherical enve-
lope SM

e (Eq. (12) in Table 3). Two grain morphologies
are considered: globular and dendritic. For the globular
growth, solute partitioning occurs at the grain envelope
which is identical to the solid–liquid interface. The
growth velocity of the globular grain vglob is governed
by diffusion, and thus a Zener-type growth formulation
is used [15]
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vglob ¼
D‘

Re

� X ð28Þ

where X ¼ ðc�‘ � c‘Þ=ðc�‘ � c�sÞ is the supersaturation.
For dendritic growth (Fig. 2), the growth velocity of the

volume equivalent sphere, venv, is related to the dendrite tip
velocity vtip. Here, the LGK model [20,21] is implemented
for the tip velocity. Thus, one has

venv¼Uenv � vtip¼Uenv �
D‘ �m �c�‘ � ðk�1Þ

C �p2
ðIv�1ðXÞÞ2 ð29Þ

where the shape factor Uenv correlates the growth velocity of
the volume equivalent sphere venv with the primary dendrite
tip velocity vtip. If the grain envelope is assumed to be an ideal
sphere connecting the outer tips of the primary dendrites [1],
Uenv is equal to one. When an octahedral envelope is assumed
to connect the primary dendrite tips [5], Uenv is equal to
1=

ffiffiffi
p3
p

. As depicted in Fig. 2, in many cases Uenv can even
be smaller than 1/

ffiffiffi
p3
p

. In reality, Uenv is dependent on the type
of alloy, the stage of solidification and the relative motion
between grains and melt [4,24–27]. Owing to the lack of
detailed knowledge on such grain growth, a process-depen-
dent variation of Uenv is not considered here.

In the current model, the morphology transition from
globular to dendritic growth (GDT) is determined by com-
paring the above-mentioned two growth velocities, vglob

and venv. At the initial stage, vglob > venv, and the globular
growth model applies. The transition from globular growth
to dendritic growth occurs as soon as venv P vglob. There-
fore, the general formula for the velocity of the volume
equivalent sphere can be expressed as

vRe ¼ maxðvenv; vglobÞ ð30Þ
Using Eq. (30) to handle the GDT is different from the
approach described by Appolaire et al. [3,5], where a
comparison of two mass transfer rates was proposed (solid-
ification/melting inside the grain was compared with the
expansion/shrinkage of the envelope).

The surface concentration SM
e of the volume equivalent

sphere is calculated by
Fig. 4. Concentration redistribution in different phase regions due to
growth of the grain envelope and solidification of interdendritic melt.
SM
e ¼ Ue

Avr � ð36p � nÞ
1
3 � f

2
3
e ð31Þ

where n is the number density of grains, and Ue
Avr is an

impingement factor which accounts for the effect of
impingement of equiaxed grains. In the present paper, it
is assumed Ue

Avr ¼ f‘ (similar to Ref. [15]). Eq. (31) applies
for both globular and dendritic solidification. With vR e and
SM

e as defined above, the volume-averaged mass transfer
rate from the ‘-to the e-phase can be calculated using
Eqs. (12) and (15) in Table 2.

In order to calculate the species exchange between the ‘-
and the e-phase by diffusion, a ‘‘diffusion” surface concen-
tration SD

e is determined by

SD
e ¼

SM
e

Usph

ð32Þ

where Usphð6 1Þ is the sphericity, i.e., the ratio of the surface
of the volume equivalent sphere to the surface area of ‘‘natu-
ral” contour of the grain [28]. In the case of globular grain, or
in the case of dendritic grain with its ‘‘natural” contour pre-
sented with an ideal sphere, Usph is equal to one [1]. For a den-
dritic grain with an octahedral contour, Usph is equal toffiffiffi

p3
p

=
ffiffiffi
3
p

[5]. For a more general case, as shown in Fig. 2, the
‘‘natural” grain envelope is approximated as the contour
which connects the primary and secondary dendrite tips. In
this case, the value of Usph can be much smaller thanffiffiffi

p3
p

=
ffiffiffi
3
p

. In reality, Usph may depend on the type of alloy,
the stage of solidification and the relative motion between
grains and melt as well [4,24–27]. Owing to the lack of infor-
mation on such details, Usph is taken as a constant value. Note
that the importance for defining two different morphological
parameters, Uenv andUsph, are further discussed in Section 4.3.
4.2. Solidification of interdendritic melt

The mass transfer rate from the d- to the s-phase (solid-
ification rate of interdendritic melt) is governed by the s–d
interface velocity vsd and the s–d interface concentration Ss.
The driving force for vsd is c�‘ � cd, but vsd is controlled by
diffusion at a diffusion length scale ld. Following the work
of WB [9], take

ld ¼ b2 �
ðk2 � d2Þ

2
ð33Þ

where b2 is a constant on the order of unity (1.0), k2 is the
secondary dendrite arm spacing, d2 is the diameter of the
secondary dendrite arm, and k2 � d2 ¼ k2 � f e

d , and

vsd ¼
2 � D‘

b2 � k2 � f e
d

� c
�
‘ � cd

c�‘ � c�s
ð34Þ

The s–d interface area in an enclosed grain envelope is also re-
lated to the secondary arm spacing ð/ 2=k2Þ. Considering a
factor Us

Avrð¼ f e
d Þ for the impingement of the secondary den-

drite arms, the s–d interface concentration can be calculated as:
Ss ¼
2 � Us

Avr

k2

� fe ð35Þ
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There is no distinction between the s–d surface and diffu-
sion surface for the interdendritic melt solidification: they
are identical. Appolaire et al. suggested another formula
for the s–d interface area concentration, but it has yet to
be experimentally determined [3–5,29]. The method used
to estimate ld and Ss may seem to be a rough estimation,
but the final solidification rate of the interdendritic melt
Mds, according to Eqs. (18), (34) and (35), is actually ad-
justed by ðc�‘ � cdÞ, where c�‘ is a function of local temper-
ature. In other words, the final solidification rate is actually
indirectly related to the global heat transfer process. The
sensitivity of modeling results to ld and Ss is further studied
and discussed in Part II.

4.3. Species exchange between different phase regions

Species exchange between different phase regions was
also studied by RT [1] and WB [9]. Without convection,
the equiaxed grain can be assumed to solidify in an isolated
‘‘representative spherical cell”, and the mass and species in
the ‘‘cell” must be conserved.

The species redistribution due to grain growth and inter-
dendritic melt solidification is shown schematically in Fig. 4.
Within a time interval dt, grain growth causes a shell of thick-
ness dRe to transfer from extradendritic to interdendritic
melt, and so the grain volume fraction increases by dfe.
The corresponding mass transfer rate is M ‘d. While the grain
size is increasing, the interdendritic melt may solidify. A new
shell of solid with concentration c�s forms, in the presently
used ‘‘equivalent sphere” approach, around the solid core.
With that, the solid volume fraction increases by dfs. The
corresponding mass transfer rate is Mds.

While the volume equivalent sphere is expanding and
the interdendritic melt solidifies, mass and species conser-
vation must be ensured. If one assumes constant but differ-
ent densities for different phase regions, species
conservation is given by

qs

dðfscsÞ
dt

þ qd

dðfdcdÞ
dt

þ q‘
dðf‘c‘Þ

dt
¼ 0 ð36Þ

The amount of solute in the solid core changes because of
the newly formed solid layer ðdfs > 0Þ of concentration c�s
when back diffusion is ignored. Thus,

qs

dðfscsÞ
dt

¼ qsc
�
s �

dfs

dt
ð37Þ

The amount of solute in the extradendritic region changes
as a result of two factors: one is the loss of a layer of the
extradendritic melt ðdf‘ < 0Þ of concentration �cenv in order
to form interdendritic melt, and the other is the gain of sol-
ute element by diffusion from the interdendritic melt into
the extradendritic melt. Thus,

q‘
dðf‘c‘Þ

dt
¼ q‘�cenv �

df‘
dt
þ q‘S

D
‘ J ‘ ð38Þ

As the volume fractions of the three phase regions sum up
to one ðf‘ þ fd þ fs ¼ 1Þ, according to the product rule
(Leibniz’s law) the second term of the LHS of Eq. (36)
can be written

qd

dðfdcdÞ
dt

¼ �qdcd �
dfs

dt
þ qdfd

dcd

dt
� qdcd �

df‘
dt

ð39Þ

Inserting Eqs. (37)–(39) into Eq. (36) yields

ðqsc
�
s � qdcdÞ �

dfs

dt
þ qdfd

dcd

dt
þ ðq‘�cenv � qdcdÞ �

df‘
dt

þ q‘S
D
‘ J ‘ ¼ 0 ð40Þ

The meaning of Eq. (40) is obvious. The species rejected
at the s–d interface (first term) and the species consumption
at the d–‘ interface (third and fourth terms) lead to the
change in the interdendritic concentration (second term).

Note that the back diffusion through the s–d interface
into the solid core is ignored in the current approach.
Should the back diffusion be considered, Eq. (37) must
include a back diffusion term

qs

dðfscsÞ
dt

¼ qsc
�
s �

dfs

dt
þ qsSsJ s ð41Þ

and Eq. (40) becomes

ðqsc
�
s � qdcdÞ �

dfs

dt
þ qsSsJ s þ qdfd

dcd

dt

þ ðq‘�cenv � qdcdÞ �
df‘
dt
þ q‘S

D
‘ J ‘ ¼ 0 ð42Þ

This relationship was suggested by many authors [3–7,9] to
determine the solidification rate of the interdendritic melt,
but with the assumption of complete mixing in the
interdendritic melt region, i.e., cd ¼ c�‘ ¼ �cenv and for equal
densities (fourth term in Eq. (42) was neglected). However,
the current model treats the average interdendritic melt
concentration cd as an additional transport quantity, inde-
pendent of c�‘ . Depending on the competition between the
growth of the grain and the interdendritic solidification,
cd lies between �cenv and c�‘ . Solidification of the interden-
dritic melt (Eq. (18)) increases cd, while the expansion of
the grain decreases cd by enclosing the new volume with
a lower concentration �cenv.

In the presence of convection, Eq. (40) or Eq. (42) is not
valid, but the idea to treat the interfacial species exchanges,
i.e., Eqs. (37) and (38), applies.

In order to estimate the diffusive flux from the grain enve-
lope into the bulk melt, the following expression is used:

J ‘ ¼ D‘

�cenv � c‘
l‘

ð43Þ

Several alternatives are suggested for evaluation of the diffu-
sion length l‘: (i) Zener-type diffusion, as mentioned in Ref.
[5], l‘ ¼ D‘=vRe ; (ii) the Landau transformation based on the
numerical solution of the local diffusion field in the extraden-
dritic melt [3,8]; (iii) the WB approach [9,30], which is based
on the analytical solution of the diffusion field with an
imposed condition that the integrated solute concentration
of the extradendritic melt must be equal to c‘; and (iv) the
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approach suggested by Badillo and co-workers [26,27], where
an experimentally determined Sherwood number correlation
is used (the diffusion length is related to the grain size, Rey-
nolds and Schmidt numbers of the settling grain). From a
practical point of view, approach (iv) seems to be the most
realistic, because the impact of melt flow on the solute diffu-
sion boundary layer surrounding a grain is considered.
Encouragingly, the succinonitrile (SCN)–acetone experiment
has shown that the average growth velocity of the six primary
dendrite tips is found to be in almost perfect agreement with
the prediction from the standard free dendrite growth theory.
However, the NH4Cl–H2O experiment has shown that the
average growth velocity of the dendrite tips is �15–68 times
larger than that predicted by the free dendrite growth theory
[24,25]. These contradicting results suggest that further
experimental studies are necessary. The empirical Sherwood
number correlation obtained for the organic model system
SCN–acetone may not be valued for metallic alloys [26,27].

Approaches (ii) and (iii) are quite computationally expen-
sive, and only valid without melt convection. Method (i) is
not subjected to this restriction, but it may raise another con-
cern. Normally for an alloy with k < 1, the extradendritic
melt is gradually enriched with solute during solidification,
given that the grain solidifies in an isolated ‘‘cell”. If the spe-
cies diffusive flux at the grain envelope is underestimated
(e.g., q‘ � SD

e � J ‘ < q‘ � ð�cenv � c‘Þ � df =dtÞ because of an erro-
neous estimation of l‘, the extradendritic melt concentration
c‘ would decrease with solidification. This happens in partic-
ular for the case when the interdendritic melt is assumed to be
well mixed ðcd ¼ c�‘ ¼ �c envÞ and the diffusion area SD

e is
underestimated. To avoid this problem, an additional crite-
rion ðl‘ 6 D‘=vReÞ must be fulfilled [9].

An important issue, to which not enough attention was
paid in previous works, is the consideration of the ‘‘true”

diffusion surface area SD
e . Most previous studies assumed

a volume equivalent sphere to represent the volume within
the ‘‘natural” contour of the grain. The volume equivalent
sphere has a smaller surface area in comparison with any
arbitrary shape of the ‘‘natural” grain contour. This
assumption would facilitate the calculation of mass trans-
fer (see Eq. (31)). However, if one takes the area of the vol-
ume equivalent sphere SM

e for the calculation of the species
diffusive flux, the diffusive flux will be underestimated. The
real diffusion surface area of the ‘‘natural” grain contour is
much larger than the surface area of the volume equivalent
sphere S M

e . The diffusion area is not equal to the artificial
equivalent sphere and must be adjusted by a factor of Usph,
as expressed in Eq. (32). Based on this, together with the
non-uniform interdendritic melt region, using the formula
l‘ ¼ D‘=vRe , the species diffusive flux can be approximated
in the current model.

Finally, the average concentration of the grain envelope
�cenv can be calculated according to the diffusion flux bal-
ance at the envelope:

Dd �
cd � �cenv

ld

¼ D‘ �
�cenv � c‘

l‘
ð44Þ
which is similar to the expression of the WB model [9]:

�cenv ¼
ldc‘ þ l‘cd

ld þ l‘
ð45Þ
5. Solution procedure

A diversity of computational tools for solving a Eulerian
multiphase transport system are available, each with their
advantages and disadvantages [31–35]. The model dis-
cussed in the present paper is developed within the frame-
work of the CFD software package, FLUENT (Fluent Inc.
USA) [22]. FLUENT provides a platform for solving the
global governing equations and provides flexibility in defin-
ing additional exchange and source terms for the governing
equations, including modification of the transport quanti-
ties. For each time step, up to 60 iterations may be neces-
sary to decrease the normalized residuals of continuity,
momentum conservation, volume fraction, species trans-
port and user-defined scalar conservation equations to a
value below the convergence limit of 10�4, and the enthalpy
conservation equations below that of 10�7. In each itera-
tion, the intermediate (auxiliary) quantities, e.g., mixture
concentration cmix, the diameters of grains de are updated
first. Based on the quantities of the last iteration, the
exchange terms and the source terms are estimated. How-
ever, owing to the complexity of the multiphase coupling,
the discretized linear equation system must be solved itera-
tively. The time step Dt should be kept small (�10�3–10�4)
to ensure that the above convergent criteria are fulfilled.
The optimal time step must be determined empirically by
trial simulations or by using dynamic time step control.

6. Summary

A modified equiaxed solidification model with convec-
tion and grain sedimentation is proposed based on a previ-
ous globular equiaxed solidification model [13,14] with an
extension to include the dendritic growth [1,9]. The
improved modeling features are addressed as follows.

1. The grain starts to grow with globular morphology, and
its growth is approximated by a Zener-type diffusion
model for steady-state growth of a sphere. After the
GDT, the growth of the dendritic grain is governed by
the tip growth kinetic, e.g., LGK model. GDT is deter-
mined simply by comparison of the Zener-type diffusion
growth velocity and the growth velocity of the volume
equivalent sphere deduced from dendritic tip growth
kinetics (maximum growth hypothesis).

2. Two morphological parameters were suggested to model
the arbitrary dendritic grain morphology: the shape fac-
tor U env and sphericity Usph. The former, U env, is a factor
relating the growth velocity of the volume equivalent
sphere to the primary dendrite tip growth velocity, the
later, Usph, is the ratio of the surface area of the volume
equivalent sphere to the surface area of the natural grain
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contour. In reality, these morphological parameters are
transient or process- and alloy-dependent quantities.
Owing to the lack of detailed knowledge on these topics,
they are assumed to be constant, i.e., the shape of the
outer grain contour is preserved during dendritic growth.

3. Inside the dendritic grain, a non-uniform solute distribu-
tion in the interdendritic melt region is modeled. The aver-
age concentration of the interdendritic melt cd is equal to
neither the s–d interfacial concentration, which is the ther-
modynamic equilibrium concentration c�l , nor the grain
envelope concentration �cenv. The difference between the
interfacial concentration c�l and the average concentra-
tion cd is considered as a driving force for the interdendrit-
ic melt solidification. The continuous solute distribution
profile in the vicinity of the grain envelope is an important
feature for quantitatively modeling the species exchange
between the extra and interdendritic melts by the mecha-
nisms of species diffusion and growth of the envelope.

4. The solidification of the interdendritic melt is governed by
diffusion in the interdendritic melt region at the diffusion
length scale of� k2. The uncertainty for the interdendritic
diffusion length and its influence on the modeling accu-
racy will be studied and discussed in Part II.

5. Although three thermodynamic phases must be distin-
guished, only a two-phase Eulerian approach is applied
to solve the transport system. The interdendritic melt
and the solid dendrites, confined in the ‘‘natural” grain
envelope, are regarded as one ‘‘hydrodynamic” phase,
sharing the same velocity. It is only necessary to con-
sider the hydrodynamic interaction between the extra-
dendritic melt and the grains.

Illustrative modeling examples, theoretical and experi-
mental verifications, and discussions on the uncertainty
of the current model assumptions are presented in the com-
panion paper: Part II.
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