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Introduction

Numerical process simulations are nowadays standard 
for designing and optimization of metallurgical processes 
[1]. Furnace construction, tundish planning, or design-
ing of continuous casting machines are assisted by the 
beforehand use of simulation tools. On the other hand, 
many metallurgical processes need multiphase and/or 
multiphysics descriptions to account for essential process 
details, yet often these descriptions are missing or only 
roughly available. In the present report, which is based on 
two former review reports by the same authors [2, 3], we 
give a short overview on present developments and future 
directions in the field.

1.  Multiphase Simulation

1.1  Particle and Bubble Motion

During the continuous-casting process, argon gas is 
injected into the submerged entry nozzle (SEN) to prevent 
attachment of nonmetallic inclusions to the inner wall of 
the SEN, to prevent air from entering the SEN, to promote 
desired flow patterns, and to promote the flotation of non-
metallic inclusion. The most common way of modeling 
particle and bubble motion is the so-called disperse phase 
method (DPM), where the trajectory of particles/bubbles 
(or packets of particles/bubbles) are estimated by solving 
Newton’s law of motion. This can be done with or without 

Abstract: The present report addresses briefly the most 
important issues for simulation of metallurgical process-
es, namely multiphase issues (particle and bubble mo-
tion; crystal motion during solidification), multiphysics is-
sues (electromagnetic stirring; electro-slag remelting; Cu-
electro-refining; fluid-structure interaction; mushy zone 
deformation), process simulations on GPUs, though-pro-
cess modelling, and automatic optimization via simula-
tion. The present state-of-the art as well as requirements 
for future developments are presented and discussed.

Keywords: Process simulation, Electromagnetic stirring, 
Electro-slag remelting, Cu-electro-refining, Fluid-structure 
interaction, Mushy zone deformation, GPU, Though-pro-
cess modelling, Automatic optimization

Aktuelle Forschung und zukünftige Entwicklung im 
Bereich Simulation metallurgischer Prozesse

Zusammenfassung: Die vorliegende Arbeit beschreibt in 
Kürze die wichtigsten Gesichtspunkte bezüglich Simu-
lationen metallurgischer Prozesse. Dies sind Mehrpha-
senaspekte (Partikel- und Gasblasenbewegung; Kristall-
bewegung während der Erstarrung), multiphysikalische 
Ansätze (Elektromagnetisches Rühren; Elektroschlacke-
Umschmelzen; Kupfer-Raffinationselektrolyse; Fluid-
Struktur-Interaktion; Deformationen im Zweiphasengebiet 
fest/flüssig); Prozesssimulation auf Graphikkarten, durch-
gängige Prozesskettensimulationen und automatische 
Optimierung mittels Simulation. Der aktuelle Stand der 
Forschung sowie Notwendigkeiten für zukünftige Entwick-
lungen werden präsentiert und diskutiert.

A. Ludwig ()
Department of Metallurgy, Montanuniversitaet Leoben,
Franz-Josef-Strasse 18,
8700 Leoben, Austria
e-mail: smmp@unileoben.ac.at

Received August 20, 2015; accepted August 25, 2015; published online October 1, 2015

http://crossmark.crossref.org/dialog/?doi=10.1007/s00501-015-0416-8&domain=pdf&date_stamp=2015-9-26


508

Originalarbeit

Ludwig et al. © Springer-Verlag Wien BHM, 160. Jg. (2015), Heft 10–11

influencing the surrounding metal flow (one- or two-way 
coupling). The impact local turbulent eddies might have 
on the distribution of particles/bubbles is quite important 
[4–6]. In ref. [7], the impact of bubbles on the transient, tur-
bulent flow in a continuous caster for steel slabs has been 
studied, and in ref. [8] bubble coagulation and break-up 
were investigated and corresponding model approaches 
were suggested. Water-particle flow experiments in a 
tundish were compared with results from the discrete 
phase model in ref. [9].

1.2  Crystal Motion during Solidification

In many practical solidification processes, the equiaxed 
crystals that are formed first move with the melt when 
they are small and then sink down and sediment when 
they are getting larger. Especially, in big steel ingots or 
in grain refined Al-alloy slabs, large regions usually form 
by growth and sedimentation of equiaxed crystals. In the 
last decades, numerical simulation of nucleation, growth, 
motion, and sedimentation of equiaxed crystals have 
made huge progress. Below the solid fraction of the coher-
ency limit where the equiaxed crystals are relatively free 
to move, their motion can be described either by the equa-
tion of motion for a single grain or by a volume-averaged 
momentum conservation equation for the solid phase. 
In refs. [10–12], a single-phase, one-domain macroscopic 
model is used to study binary alloy solidification with mov-
ing equiaxed solid phase. Herein, the equation of motion 

of single grains is solved by using an effective viscosity for 
the solid/liquid mixture. In refs. [13–30], the volume-aver-
aged momentum conservation equation for the liquid and 
the solid phases is solved together with a grain number 
density conservation equation using an effective solid vis-
cosity expression as function of solid fraction. In ref. [31], 
this model is combined with the description of shrinkage 
cavities during solidification of large ingots (Fig. 1).

2.  Multiphysics Simulation

2.1  Electromagnetic Stirring

Electromagnetic stirring (EMS) during solidification pro-
vides a number of benefits like the enhanced transition 
from columnar to equiaxed solidification, the homogeni-
zation of the liquid steel flow, and the reduction of surface 
or subsurface defects. It is well known that the primary 
purpose of enhancing the flow near or in the mushy zone 
is to help break down the coarse columnar dendritic solidi-
fication structure to produce a finer dendritic structure and 
a larger proportion of equiaxed grains. Modelling of tur-
bulent flow, steel temperature, solidification, exogenous 
inclusion transport, and electromagnetic stirring have now 
become possible on quite an elevated scientific level [32, 
33]. In [34], the steel flow in the mold region of a round 
bloom caster was investigated by numeric simulations 
and experimental work. A specific test section was built 
up, which allows flow measurements to be carried out in 

Fig. 1: Simulation of formation of 
macrosegregation due to equiaxed 
motion and shrinkage cavity 
formation during solidification 
of a 3.3 ton ingot. (a) shows the 
macrosegregation strength with 
blue for negative and yellow/red 
for positive macrosegregation; 
(b) solid volume fraction and melt 
flow at the end of solidification. 
Corresponding model description 
can be found in [31]
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challenge for a corresponding numerical process simula-
tion is that the driving phenomena for natural convection 
(dissolution and plating of copper) happens in the 100 µm 
vicinity of the electrodes, whereas force convection is gov-
erned by in- and outlets of the full tankhouse cell which 
is in the order of several meters. Hence, simultaneous 
calculation of natural and forced convection in a full-scale 
tankhouse cell is at present impractical if not impossible. 
The number of cells would be far too large. Therefore, in 
ref. [40], it was suggested to break down the simulation 
into two parts. First, the natural convection caused by the 
density changes of the electrolyte is simulated in a “local” 
simulation covering one anode-cathode pair. Secondly, 
the flow of the electrolyte caused by the forced convec-
tion is simulated at a “global” scale, whereby the results 
from the “local” simulation is included by individual in-/
outlet surfaces in between the multiple anode-cathode 
gaps. With that approach, it was possible to identify areas 
with insufficient electrolyte movement in a full-scale cop-
per refining electrolysis cell. With this information, an 
improper concentration of inhibitors and/or undesired 
anode slimes occurrence can numerically be detected.

2.4  Fluid-structure Interaction

The term fluid-structure interaction is used for problems 
where a fluid and a solid body exchange momentum due to  
the deformation of a predefined surface. A simple example 
is an exhaust pipe that bends due to the thermal impact 
of the hot fluid (liquid or gas) which flows through the 
pipe. Obviously, the pipe bending changes also the fluid 
domain. Describing the fluid flow is a typical CFD (Com-
putational Fluid Dynamic) problem, whereas describing 
the pipe deformation is a typical FEM (Finite Element 
Method) problem. The interplay of CFD and FEM happens 
here via the inner surface of the pipe. Apart from the use 
of both a CFD- and a FEM-tool for the same problem and 
handling the data transfer between them, the challenge of 
fluid-structure interaction lies in the necessity of perma-

a 1:3 scale Perspex model of a round bloom strand under 
the influence of a rotating magnetic field. The low melting 
point alloy GaInSn was used to substitute the liquid steel. 
Despite the success of modeling EMS in the mold, electro-
magnetic stirring in the bending zone of a steel slab caster 
or even at areas were solidification finish still needs fur-
ther developments. Here the multiphase nature of semi-
solid slurry must be added to the flow description.

2.2  Electro-slag Remelting

The production of materials that are free from detrimental 
segregation has long demanded the use of the remelting 
processes of vacuum arc remelting (VAR) and electroslag 
remelting (ESR) [35]. Recently the steel industry has pro-
duced and, even more in the near future, will have to pro-
duce much larger ingots for larger parts with improved 
cleanliness levels and at very low segregation limits. For 
example, the aviation industry and power supply industry 
are looking for larger diameters e.g. for bearings, plates, 
discs, and shafts for turbines. Numerous publications can 
be found in the field of simulation of the ESR process, 
but almost all are performed in 2D. Unfortunately, simple 
models using rough 2D approximations cannot be used 
in large geometries where 3D effects are believed to be 
dominant. The group of authors has recently presented 3D 
simulations of the ESR process and discussed special 3D 
features [36–39]. Fig. 2 shows the velocity field over the 
exposed slag surface and at the first slag/metal interface 
under electrode for a 600 mm ingot. Especially, the impact 
individual or collective droplet formation might have on 
the resistance swing plot typically taken during operation 
of an ESR-device is of great technical importance.

2.3  Cu Electro-refining

The copper refining electrolysis process is essential for 
producing high purity copper at an industrial scale. The 

Fig. 2: Velocity field over the 
exposed slag surface and at the 
first slag/metal interface under 
electrode (liquid metal film and 
droplet). The electrode diameter is 
420 mm and the ingot diameter is 
600 mm. The vectors have all the 
same length. Small apparent vec-
tors are vectors that are meanly 
directed in the vertical direction. 
Picture taken from ref. [36]
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ics (SPH) technique has been established as one of the 
major concepts for fluid animation in computer graphics 
[49]. Nowadays, complex scenes with millions of sampling 
points, one- and two-way coupled rigid and elastic solids, 
multiple phases and additional features such as foam or 
air bubbles can be computed at reasonable expense. Fig. 4 
shows an impressive example of the capacity of SPH. 
However, the technique still needs some major develop-
ments in order to transform from being a computer graph-
ics tool to a tool for solving scientific problems. At present, 
the group of authors is developing a Smoothed-Particle 
Hydrodynamics (SPH) method specially extended for sim-
ulating metallurgical processes [50].

4.  Though-process Modelling

ICME, short for “Integrated Computational Materials 
Engineering”, stands for through-process simulations 

nently remeshing both domains [41]. In ref. [42], a novel 
pressure-velocity formation is suggested, which makes 
CDF and FEM calculations with the same numerical code 
possible. A partitioned fluid-structure interaction approach 
for ingot solidification has been proposed in ref. [43].

2.5  Mushy Zone Deformation

During solidification of castings, equiaxed crystals hav-
ing formed sink downwards, sediment, and form a packed 
bed. The behavior of separated moving crystals can be 
described by a submerge object approach, whereas the 
viscoplastic behavior of a semi-solid slurry follows a vol-
ume-averaged viscoplastic constitutive equation. In ref. 
[44, 45], a two-phase Eulerian-Eulerian volume-averaging 
approach is used to combine both flow regimes. The tran-
sition happens at a certain solid volume fraction, the so-
called coherency limit. Starting with a uniform distribution 
of crystals in rest, sedimentation and packing of crystals 
are described together with deformation of and stress 
evolution in the backed bed. It is shown that semi-solid 
channels where liquid can flow more easily might exist in 
between coherent solid area (Fig. 3) and that the formation 
of a continuous crystal pile up and a corresponding ini-
tiation of a crystal avalanche/collapsing can be predicted. 
The model is the first step towards describing the forma-
tion of the solidifying shell together with the occurring gap 
between mold and metal during thin slab casting of steel.

3.  Process Simulations on GPUs

Scientific calculations on modern Graphic Cards, so-called 
GPUs, have the potential of being a factor of 10x–100x 
times faster than the classical methods using CPUs [46–48]. 
However, in order to achieve such huge accelerations,  
the numerical approach must take full advantage of the 
GPU architecture. The Smoothed-Particle Hydrodynam-

Fig. 3: Modeling example of solid 
packing and liquid draining dur-
ing sedimentation of equiaxed 
crystals. (a) and (b) show solid 
fraction with liquid and solid veloc-
ity vectors; (c) apparent kinematic 
viscosity of the solid distribution; 
(d) shrinkage rate. Figures are 
taken from ref. [44]

 

Fig. 4: Three medieval ships in distress after collapse of the left wall. 
Simulation was done with 20 Mio. SPH particles. Picture taken from ref. 
[49]. (See also https://www.youtube.com/watch?v=UPh0fkFPFig)

 

http://www.youtube.com/watch?v=UPh0fkFPFig
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with information exchange between the heterogeneous 
varieties of numerous simulation tools. Examples of 
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[51–53], although, promoted by the US government via 
the Materials Genome Initiative1 and the EU-commission 
via the Integrated Computational Materials Engineering 
expert group2, ICME is still suffering from long computa-
tion times especially for 3D problems. The ultimate goal 
of computationally develop materials and corresponding 
production routes would even take much more computa-
tion time as automatic optimization is an essential part of 
a smart solution—an objective which will surely keep the 
next generation of simulation experts busy.
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of the whole part. However, it is not clear which process 
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Process simulations for metallurgical processes have 
become a daily routine for engineers working in industry. 
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ics in nature. Considering corresponding phenomena in 
detail is soon bringing the standard simulation tools to 
the edge of their ability. In the next decades, the following 
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