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a b s t r a c t 

When a strand is subjected to rolling and pressing during mechanical reduction (MR), 

deformation-induced strand contraction or dilatation can occur. A novel modeling strat- 

egy has been designed to account for this mechanism in a two-phase Eulerian–Eulerian 

volume-average model with a fixed geometry. The strategy is based on the following ideas: 

(1) during MR, the pressing force from the rolls to the solidifying strand leads to the com- 

pression of the viscoplastic network that causes melt to be squeezed out of that region; 

(2) if the pressing is strong enough to cause the melt to penetrate the surrounding solid 

shell, the strand deflects outwards (the dilatation state); (3) as the melt flow weakens and 

the following pair of rolls approaches, the “expanded” strand structure is forced to go back 

to its original form (the contraction state). Numerically, special Robin type boundary con- 

ditions have been imposed on the strand surface to comply with the above description 

while maintaining a fixed domain. Strand deflection has been estimated and correlates 

well with the mush deformation intensity and solidification evolution during the casting 

process. Macrosegregation is also discussed based on the strand deflection and deforma- 

tion parameters. 

© 2022 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

1. Introduction 

Macrosegregation is a common solidification defect that causes a degradation of the mechanical properties of castings 

[1] . Many researchers dedicated their careers to comprehend macrosegregation and found many causes for its formation. 

Some of the main causes that lead to macrosegregation formation are: thermal and solutal buoyancy-driven convection flow 

of the liquid melt [2] , solidification-induced feeding flow [3] , sedimentation of equiaxed grains [4] , and mush deformation

[5] . In most castings, all phenomena are present and play a critical role in the evolution of the cast. 
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Nomenclature 

List of symbols 

A, B rheological parameters (-) 

c solute concentration [wt.%] 

c 0 initial solute concentration [wt.%] 

c ∗ equilibrium species conc. [wt.%] 

C � s species transfer rate [kg/m 

3 /s] 

c p heat capacity [J/K/kg] 

D diffusion coefficient [m 

2 /s] 

g volume fraction (-) 

g 
p 
s packing solid fraction (-) 

h enthalpy [J/kg] 

H � s enthalpy transfer rate [J/m 

3 /s] 

h c heat transfer coefficient [W/m 

2 /K] 

k redistribution coefficient (-) 

K v viscoplastic consistency (Pa ·s) 

m strain-rate sensitivity (-) 

m � s liquidus slope (-) 

M � s mass transfer rate [kg/m 

3 /s] 

n number density of grains [m 

−3 ] 

N 

A 
cell 

, N 

B 
cell 

total number of cells on the surface of sub-domain A and B (-) 

N 

B 
celli 

cell number along the patch of sub-domain B (-) 

p pressure [N/m 

2 ] 

r average radius of equiaxed crystal [m] 

S A 
f 

total patch area in sub-domain A (m 

2 ) 

S � s specific surface area of crystals [m 

−1 ] 

t time [s] 

T temperature [K] 

T liq liquidus Temperature [K] 

u 

∗ average velocity [m/s] 

U � s momentum transfer rate [kg/m 

2 /s 2 ] 

U 

d 
� s source term for drag force [kg/m 

2 /s 2 ] 

v velocity [m/s] 

v r interfacial growth vel. of crystal [m/s] 

v A x , v B x average velocity along the cast direction in sub-domain A and B [m/s] 

v B y velocity normal to the casting direction in sub-domain B [m/s] 

˙ ε eq 
s equivalent strain rate [1/s] 

ϕimp impingement factor (-) 

φA 
f 

volumetric flow rate [m 

3 /s] 

λ thermal conductivity [W/m/K] 

ρ density [kg/m 

3 ] 

τ viscous stress [N/m 

2 ] 

Sub/Superscripts 

app apparent 

eff effective 

� liquid phase 

mix mixture rule 

s solid phase 

Several solidification models have been developed to simulate solidification and macrosegregation. The earliest attempt 

was the mixture continuum model [ 2 , 6 , 7 ], which reduced the two-phase system to a one-phase model by considering each

variable as mixture quantities (i.e., only one set of mixture conservation equation was used). Later, solidification models 

based on a Euler-Euler volume-average approach were proposed [8–10] , where a set of conservation equations were solved 

for each phase in a coupled manner. This Euler-Euler method proved to be more adequate for simulating the macroseg- 

regation from multiphase transport phenomena, as the relative motion between phases could be captured. This work has 

been further extended by research groups like Ludwig and Wu [ 3 , 4 , 11 ] and Combeau et al. [12] to include multiple physics
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Table 1 

Volume-average conservation equations. 

Mass: ∂(g i ρi ) 
∂t 

+ ∇ · (g i ρi v i ) = ∓M � s (1) 

Momentum: ∂(g i ρi v i ) 
∂t 

+ ∇ · (g i ρi v i v i ) = −g i ∇p + ∇ · (g i τ
eff
i 

) ∓ U � s (2) 

Species: ∂( g i ρi c i ) 
∂t 

+ ∇ · ( g i ρi v i c i ) = ∇ · ( g i ρi D i ∇ c i ) ∓ C � s (3) 

Enthalpy: ∂(g i ρi h i ) 
∂t 

+ ∇ · (g i ρi v i h i ) = ∇ · ( λi 

c p, i 
∇h i ) ∓ H � s (4) 

Grain transport: ∂n 
∂t 

+ ∇ · (v s n ) = 0 (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

occurring during casting. These advancements enabled both groups to simulate the typical macrosegregation patterns found 

in industrial casting processes. 

Nevertheless, mush deformation is still a macrosegregation-inducing mechanism that is often neglected in general solid- 

ification models because of the complexity in its numerical implementation. Mush deformation leads to a compression or 

expansion of the dendritic network which can occur due to thermal constraints (e.g., in direct chill casting), metallostatic 

pressure (e.g., in continuous casting of steel), or mechanically applied strand thickness reduction (e.g., in twin-roll casting 

or during the “soft reduction" stage at the end of the solidification process in the continuous casting of steel). Viscoplastic

constitutive laws for semi-solid alloys have been proposed by Nguyen et al. [13] based on isothermal uniaxial compression 

and drained die pressing experiments for the A356 alloy. According to the authors, pressing of the solid skeleton drives the

liquid flow behavior, which in turn affects the stress in the solid phase. This viscoplastic behavior starts at a solid fraction

of 0.57. Subsequent research has extended the characterization of the viscoplastic behavior of alloys [14] , under different 

stress-strain conditions [15] and alloy properties [16] . 

Koshikawa et al. [17] investigated the macrosegregation formation mechanism due to solid deformation during punch 

pressing of solidifying steel ingots. A negative solid divergence was found in the ingot center, which was an indication of

mush compression. Similarly, a negative macrosegregation was found in the ingot center as well. In continuous casting, 

owing to the large metallostatic pressure, the strand is subjected to successive contraction/dilatation states (also referred 

to as bulging), which causes the formation of a centerline macrosegregation. Most numerical models employed to simulate 

bulging-induced macrosegregation are still very incomplete because they generally are limited to a certain range of the 

solidification process, impose a pre-defined bulging profile to the strand, or do not consider the actual deformation behavior 

of the solid skeleton [18–20] . The main exception is the work of Fachinotti et al. [21] who proposed a complex model

based on the finite-element method (FEM) that coupled mass, momentum, energy, and solute transfer equations with the 

viscoplastic behavior of materials. The model was applied to the steel slab continuous casting process, and the authors 

demonstrated the impact of the deformation of the solid skeleton on macrosegregation when the cast strand was subjected 

to consecutive effects of bulging. In twin-roll casting, Rodrigues et al. [22] also considered the viscoplastic behavior of the 

dendritic network and found that the relative motion between the solid and liquid phases caused by the deformation of the

mush during pressing and rolling influenced the macrosegregation profiles observed in the final metal strip. A parameter 

study was performed to determine the optimal process window (considering roll speed, cooling conditions of the rolls, 

etc.) to achieve minimal composition variation in the final strip [23] . Recently a mixture formulation of the Norton-Hoff

type viscoplastic model was applied by some of the authors to simulate the growth of the solidified shell in a thin slab

continuous casting mold [24] . 

In the present paper, we extend our proposed viscoplastic model [ 22 , 23 ] to study the strand deflection (i.e. contrac-

tion/dilatation states) induced by the mush deformation during mechanical reduction (MR) of an octuplet-roll casting tech- 

nique. This design comprises some features of the industrial continuous casting technique during the “soft reduction” stage 

(at the end of the solidification process), but the influence of the metallostatic pressure is neglected for simplicity. The main

novelty of this work is the implementation of a modeling strategy that captures the dynamic effect of the contraction and

dilatation states of the strand – which evolves during the casting process – in a simulation that considers a fixed geometry. 

The goal is to develop a valid numerical framework that does not use a pre-defined strand deflection profile, since it directly

influences the outcome of the simulation, while still considering the effect of mush deformation and solidification kinetics 

in the casting outcome. 

2. Model description 

2.1. General conservation equations 

A two-phase Eulerian–Eulerian volume-average model is used in this study. It solves the volume-average conservation 

equations of mass, momentum, species, and enthalpy (as shown in Table 1 ) for two phases: solid equiaxed crystals (s) and

liquid melt ( � ). The sum of their volume fractions always equals unity. An extra transport equation for the number density

of the equiaxed crystals is also considered (Eq. 5). Note that all symbols are defined in the Nomenclature. 

The new enthalpy is used to update the temperature using the following thermodynamic relation: h i = 

∫ T i 
0 

c p , i dT . The 

latent heat is considered implicitly in the model as the difference between the enthalpies of the two phases (note that the

heat capacity is different for each phase). M � s , U � s , C � s , and H � s are the source terms for the conservation equations of mass,
772 
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Table 2 

Source terms in the conservation equations. 

Mass transfer rate: M � s = v r S � s ρs φ imp (6) 

Momentum transfer rate: U � s = U d � s + u ∗M � s (7) 

Species transfer rate: C � s = c ∗s M � s (8) 

Enthalpy transfer rate: H � s = h c ( T � − T s ) (9) 

Table 3 

Variables in the mass transfer rate equation. 

Interfacial growth velocity: v r = 

D � 
r f (1 −r/r f ) 

c ∗� −c � 
c ∗� (1 −k ) 

(10) 

Specific surface area: S � s = n · 4 π r 2 (11) 

Impingement factor: φimp = min [ g � / (1 − π
√ 

3 / 8) , 1] (12) 

 

 

 

 

 

 

 

 

 

 

momentum, species, and energy, respectively. They take the negative sign in the liquid phase and positive sign in the solid

phase. They are presented in Table 2 . 

In Eq. (9), h c = 10 9 W/(m 

3 ·K). This large value guarantees that both phases have a similar temperature. In M � s , v r is the

interfacial growth velocity of the equiaxed crystals, S � s is the specific surface area of the equiaxed crystal, and ϕimp is the

impingement factor. They are defined in Table 3 . 

Note that ( c ∗� − c � ) is the driving force for the solidification/remelting. When ( c ∗� − c � ) > 0, v r > 0 which means solidifica-

tion occurs, whereas when ( c ∗� − c � ) < 0 remelting occurs. The equilibrium species concentration in the liquid phase at the

interface ( c ∗� ) can be obtained by Eqn. (13) . 

c ∗� = 

(
T � − T liq 

)
/m � s (13) 

2.2. The viscoplastic model 

For the effective viscous stress term in the momentum equation, a viscoplastic model is considered when the solid 

fraction is above a viscoplastic threshold ( g t s = 0.57) [13] . This means that above this threshold, the solid skeleton is coherent

enough to sustain high stresses. Under the viscoplastic threshold or in the liquid phase, the stress term is a function of the

deviatoric part of the strain rate. This is summarized in Eqs. (14) and (15) . 

Liquid phase : τ eff
� = 2 μ� dev ( ̇ ε � ) (14) 

Solid phase : τ eff 
s = 

{
2 μs dev ( ̇ ε s ) for g s ≤ g t s 

2 

μapp 
s 

A 
dev ( ̇ ε s ) + μapp 

s 

(
1 

9 B 

)
tr ( ̇ ε s ) I for g s > g t s 

(15) 

In Eqs. (14) and (15) , ˙ ε � and ˙ ε s are the strain-rate tensors of the liquid and solid phases, respectively, I is the identity

tensor, μ� is the constant liquid viscosity, and μs is the solid viscosity given by the following equation: 

μs = 

μ� 

g s 

( (
1 − g s 

g p s 

)−2 . 5 g p s 

− ( 1 − g s ) 

) 

(16) 

The packing limit ( g 
p 
s ) is equal to 0.585, according to Olmedilla’s work [25] . In the viscoplastic regime, μapp 

s is the appar-

ent solid viscosity which takes the form given in the Norton–Hoff model [26] : 

μapp 
s = 3 K v 

(√ 

3 ̇ ε eq 
s 

)m −1 
(17) 

where K v is the viscoplastic consistency, which is equal to 6.31 ×10 6 Pa �s [23] , and m is the strain-rate sensitivity constant,

which is equal to 0.213 [13] . In Eq. (17) , the equivalent strain rate ( ̇ ε eq 
s ) can be written as follows: 

˙ ε eq 
s = 

√ 

2 

A 

( ̇ ε s : ˙ ε s ) −
(

2 

3 A 

− 1 

9 B 

)
tr ( ̇ ε s ) 

2 
(18) 

For the Al-4 wt pct. Cu alloy, the rheological parameters of A and B are shown in Eqs. (19) and (20) [ 13 , 23 ]. 

A = 3 / g 6 . 47 
s (19) 

B = 9 × 10 

−3 
(
1 / g 6 . 94 

s − 1 

)
(20) 

Further details of the viscoplastic model can be found in Rodrigues et al. [22] . 
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Fig. 1. Schematic representation of the geometry and calculation domain. At each pair of rolls, the slab reduction is 2.3 mm. 

Table 4 

Discretization schemes for each term of 

the conservation equations ( ψ refers to a 

generic variable). 

Term Discretization schemes 

∂ / ∂ t Euler implicit 

∇ψ Gauss linear 

∇ · ( v i αi ) Gauss vanLeer 

∇ · ( v i v i ) Gauss limitedLinearV 1 

∇ · ( v i αi ψ ) Gauss limitedLinear 1 

∇ · ( ψ ) Gauss linear 

∇ 

2 ψ Gauss linear corrected 

( ψ ) f linear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Numerical implementation 

3.1. Model geometry 

The model has been developed within the OpenFOAM software framework (version 5.0). The schematic diagram of the 

geometry used in this work is shown in Fig. 1 . The geometry replicates an octuplet-roll casting technique, which subjects

the strand to successive regions of MR and rolling. The length of the total calculation domain is 720 mm, the initial height

is 60 mm, the roll diameters are 150 mm, and the distance between rolls in each section is 154 mm. At each roll pair,

the slab reduction is 2.30 mm. The whole calculation domain is 2D and is divided into 1440 quadrilaterals cells (i.e., 96 in

the horizontal direction and 15 in the vertical direction). Each section contains 300 cells, with 20 cells along the horizontal

direction (10 in red section and 10 in blue section). The time step size was set at 1 × 10 −6 s. The steady state was reached

after 125 s. The results were independent of mesh resolution (meshes with two and four times more cells than the current

one were tested). 

The solution algorithm is based on the PIMPLE approach. The numerical configuration adopted in the simulations uses 

predominantly linear solvers with Gauss–Seidel smoothers [27] . The exception is the pressure field which is solved us- 

ing a geometric–algebraic multigrid solver, with a (symmetric) diagonal incomplete-Cholesky smoother [27] . The numerical 

schemes used to discretize each term in the conservation equations are summarized in Table 4 . For the source terms of the

mass, momentum, energy and solute conservation equations, an implicit treatment was adopted to improve the robustness 

of the model [23] . 

3.2. Boundary conditions 

The main boundary conditions used in the simulations are listed in Table 5 . The location of each patch can be found

in Fig. 1 . At the “Inlet”, a static pressure value of 10 5 Pa has been assumed, so that the velocity of the flow is adjusted

according to the downstream solution. All the remaining patches have zero Neumann boundary conditions for pressure. At 

the “Outlet”, the casting speed of 0.012 m/s was set. At “Wall 1 ′′ and “Wall 2 ′′ , a no-slip velocity boundary condition was

applied to the liquid phase, whereas a slip velocity boundary condition was applied to the solid phase. Similarly, at the rolls,

an angular velocity (between 0.14 rad/s and 0.16 rad/s depending on the strand thickness) was assumed for the liquid phase,

whereas a slip boundary condition was assumed for the solid. Between each pair of rolls ( Sections 1 to 4 ), the strand surface

is divided into sub-domain A and B, which have their special set of Robin type boundary conditions. A detailed description

of these boundary conditions is given in section 3.D. 
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Table 5 

Boundary conditions for velocity and temperature fields. 

Patch Velocity/Pressure Temperature(liquid and solid) Species/Number density 

liquid solid (liquid and solid) 

Inlet Fixed pressure 

(10 5 Pa) 

Fixed pressure 

(10 5 Pa) 

Fixed temperature 

(919.74 K) 

Fixed value (same as 

initial values) 

Outlet Fixed velocity 

(0.012 m/s 0 0) 

Fixed velocity 

(0.012 m/s 0 0) 

Zero Gradient Zero Gradient 

Wall 1 No slip Free slip Fixed temperature 

(919.74 K) 

Zero Gradient 

Section 1 Sub-domain A Custom BC1 Heat Flux 

(T ∞ = 300 K, 

h c = 4300 W/m 

2 /K) 

Zero Gradient 

Sub-domain B Custom BC2 Heat Flux 

(T ∞ = 300 K, 

h c = 4300 W/m 

2 /K) 

Custom BC2 

Section 2, 

3, 4 

Sub-domain A Custom BC1 Heat Flux 

(T ∞ = 300 K, 

h c = 100 W/m 

2 /K) 

Zero Gradient 

Sub-domain B Custom BC2 Heat Flux 

(T ∞ = 300 K, 

h c = 100 W/m 

2 /K) 

Custom BC2 

Wall 2 No slip Free slip Heat Flux 

(T ∞ = 300 K, 

h c = 100 W/m 

2 /K) 

Zero Gradient 

Rolls 

1, 2 

Rotating velocity 

(0.14-0.16 rad/s) 

Free slip Heat Flux 

(T ∞ = 300 K, 

h c = 4300 W/m 

2 /K) 

Zero Gradient 

Rolls 

3-8 

Rotating velocity 

(0.14-0.16 rad/s) 

Free slip Heat Flux 

(T ∞ = 300 K, 

h c = 600 W/m 

2 /K) 

Zero Gradient 

Table 6 

Initial conditions and thermodynamic properties for Al-4wt pct. Cu [23] . 

Item Value 

Initial conditions Temperature of pure Al, T liq 933.5 K 

Initial solid fraction, f s 1 ×10 - 5 

Initial temperature (liquid, solid), T � / T s 919.74 K/919.74 K 

Liquid species mass fraction, c � 0.04 wt pct. 

Solid species mass fraction, c s 0.0058 wt pct. 

Number density of equiaxed crystals, n 1.53 ×10 11 m 

- 3 

Thermodynamic 

properties 

Liquidus slope, m � s -3.44 K.(wt pct.) - 1 

Redistribution coefficient, k 0.145 

Density (liquid, solid), ρ� / ρs 2606/2743 kg/m 

3 

Viscosity (liquid), μ� 0.013 kg/m/s 

Thermal conductivity (liquid, solid), λ� / λs 77/153 W/m/K 

Heat capacity (liquid, solid), c p ( � ) / c p (s) 1179/766 J/kg/K 

Diffusion coefficient (liquid, solid), D � / D s 5 ×10 - 9 /8 ×10 - 13 m 

2 /s 

 

 

 

 

 

 

 

Heat flux boundary conditions were applied on the slab surfaces and rolls: the cooling temperatures and corresponding 

values for the heat transfer coefficient ( h c ) are given in Table 5 . Note that, at the beginning of the domain (i.e., in Section 1

and in the first pair of rolls), exaggerated cooling conditions have been imposed to expedite the solidification process and 

quickly reach a kissing point. The remaining sections assume more moderate cooling conditions. As it will be shown later, 

this allows us to analyze, in a smaller test case, regions of the process where melt is expected to still separate the two

solid shells (Section 1) and regions of the process where the semi-solid has a fully viscoplastic behavior in between rolls

( Sections 3 and 4 ). 

The simulation starts with a very small solid fraction of 1 × 10 −5 (not absolute 0 for numerical reasons), and a casting

temperature of 919.74 K (i.e., slightly above liquidus temperature, T liq ). The alloy used in this simulation is Al-4 wt pct. Cu.

The initial equiaxed crystal radius is r = 2.5 × 10 −6 m and the initial number density is given by the geometrical relation

n = f s / ( 
4 π
3 · r 3 ) . The initial conditions and thermodynamic properties for Al-4 wt pct. Cu are listed in Table 6 . 

3.3. Modelling strategy for contraction/dilatation states between rolls in fixed geometry 

Fig. 2 compares the current modeling strategy ( Fig. 2 b) with the standard solution ( Fig. 2 a) adopted in the literature to

model the contraction/dilatation states between rolls in a fixed geometry. In both cases, each section between the two rolls 

is divided into two sub-domains: sub-domain A and sub-domain B. 
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Fig. 2. Comparison between different modeling strategies used to model contraction/dilatation between rolls: (a) with predefined strand deflection [28] , 

and (b) with strand deflection as a result of viscoplastic deformation during MR (present work). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 2 a, the approach is based on the work of Miyazawa and Schwerdtfeger [18] and later adopted by Domitner et al.

[28] . It assumes that the strand surface deflection has a fixed pattern that can be approximated with a cosine function. The

velocity is determined based on the derivative of the given curve and no solid deformation is considered. 

In Fig. 2 b, the approach adopted in the current work considers the viscoplastic behavior of the mush, and the strand

has straight surfaces between rolls. During MR, the pressing forces from the rolls on the viscoplastic body leads to the

compression of the semi-solid material inside the mushy zone, which causes liquid to be squeezed out of the solid skeleton.

If this liquid flow is strong enough to go through the solid shell and reach the strand surface in sub-domain A, it is assumed

that its inertia is able to deflect the strand in that region. Numerically, the liquid flow is allowed to leave the domain through

the surfaces of sub-domain A. This corresponds to the dilatation state. In sub-domain B, the total calculated outflow is 

then re-introduced back into the domain to fulfill mass conservation. As a result, the strand surface deflects back to its

original form as the fixed support of the following pair of rolls approaches. This corresponds to the contraction state. The

potential strand deflection between two pair of rolls is estimated based on the volumetric flow rate leaving sub-domain A 

and entering sub-domain B. Note that the solid and liquid densities are assumed to be different to each other, but constant

( Table 6 ). Therefore, numerically, mass conservation is equivalent to volume conservation (see Appendix). 

It is worth noting that strand surface deflection only takes place when g s > g t s . If g s ≤ g t s , the solid skeleton is not coherent

enough to sustain high stresses and so the contraction/dilatation states do not occur. Similarly, if liquid melt remains in 

between two coherent solid shells, the rolling pressure is damped by the liquid phase and no viscoplastic deformation 

takes place. Under such conditions, the patches in sub-domains A and B of Sections 1 to 4 are treated as free-slip walls.

Furthermore, for simplicity, the metallostatic pressure influence is neglected in the current work, so that rolling pressure is 

the only origin of strand contraction/dilatation. 

3.4. Custom boundary conditions in sub-domains A and B 

If g s < g t s , the strand surface behaves as a stationary wall in both sub-domains A and B. There is no strand deflection. 

If g s ≥ g t s , for sub-domain A, the implementation relies on a Robin type boundary condition: (1) along the casting di-

rection, the linear velocity is equivalent to the corresponding angular velocity of the preceding roll; and (2) normal to the

casting direction, the outflow is treated using a Neumann boundary condition, whereas a possible inflow is treated with a 

fixed value of 0 (i.e., no reverse flow). 

If g s ≥ g t s , for sub-domain B, the implementation also relies on a Robin type boundary condition: (1) along the casting

direction, the velocity on the patch of sub-domain B is equal to the mean velocity obtained on the patch of sub-domain A

(see Eq. (21) ); and (2) normal to the casting direction, a uniform velocity field is firstly determined to match the flow rate

calculated in sub-domain A and then the velocity field is adapted to give a pre-defined profile along the patch of sub-domain

B (see Eq. (22) ). 

As mentioned above, along the casting direction, the average velocity in sub-domain B is calculated as follows: 

v B i , x = 

∑ 

(
v A 

i , x 

)
N 

A 
cell 

(21) 

where the superscripts A and B represent the corresponding sub-domains, the subscript x represents the x-component of 

the velocity, the subscript i represents the solid or liquid phase, and N 

A 
cell 

is the total number of cells on the surface of

sub-domain A. 

Normal to the casting direction, in sub-domain B, the following expression has been used: 

v B i , y = 2 

N 

B 
celli 

N 

B 

∑ 

(
φA 

f ( i ) 

)
S A 

(22) 

cell f 
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Fig. 3. Steady-state result for solid fraction. The white line represents the viscoplastic threshold. 

Fig. 4. Steady-state result for solid fraction along the centerline. The horizontal dashed line represents the viscoplastic threshold. The vertical dotted lines 

represent the position of the rolls. 

 

 

 

 

 

 

 

 

 

 

 

 

where the factor 2 comes from the triangle similarity theorem, 
∑ 

(φA 
f(i) 

) is the sum of the volumetric flow through the

entire patch in sub-domain A, S A 
f 

is the total patch area in sub-domain A, N 

B 
celli 

represents the cell number along the patch

of sub-domain B, and N 

B 
cell 

is the total number of cells in the patch of sub-domain B. Eq. (22) gives a linear increase in

velocity along the patch (like the profile shown in Fig. 2 b). This profile is arbitrary and can be adjusted to better replicate

the physics underlying strand deflection. This will be discussed in Section 5.B. 

4. Results 

4.1. Solid fraction distribution 

Fig. 3 shows the solid fraction distribution in the domain. The intense cooling rates imposed in Section 1 produce rapid

growing solid shells that are still separated by liquid melt at the centerline. After Section 1, normal cooling rates are assumed

on the rolls and strand surface. As a result, the growth of the partly solid shells is more moderate, but they still merge before

the end of Section 2 (i.e., kissing point). From this point, a fully coherent mush has been formed and so, according to the

numerical implementation, the strand can now contract or dilate when subjected to MR in Sections 3 and 4 . 

The solid fraction evolution along the centerline is plotted in Fig. 4 . It confirms that the solid fraction ( g s ) surpasses the

viscoplastic limit near the end of Section 2. After that, the more significant increases in solid fraction occur when the strand

passes through each pair of rolls because of the relatively large imposed cooling conditions. 

Although in Section 1 intense cooling conditions are imposed, the solid fraction is almost negligible in Fig. 4 because the

line is taken along the centerline, where melt is still prevailing. 

4.2. Velocity on the strand surface between rolls 

Fig. 5 (a1) and (b1) show the x- and y-components of the liquid velocity along the strand surface of Sections 1 to 4 . The

first half of each figure corresponds to sub-domain A, whereas the second half corresponds to sub-domain B. 
777 



R. Guan, C.M.G. Rodrigues, C. Ji et al. Applied Mathematical Modelling 114 (2023) 770–784 

Fig. 5. Steady-state results of liquid (1) and solid (2) phases for (a) x-component, and (b) y-component of velocity along the strand surface between two 

rolls, for the four different sections considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the x-component velocity plot ( Fig. 5 (a1)), increasingly larger liquid velocities are found in subsequent sections be-

cause of the decrease in strand thickness. The average x-component of the velocity in a particular section equates the radial

velocity of the preceding roll. At Section 4, the average x-component of the liquid velocity corresponds to the casting speed

imposed at the outlet (i.e., 12 mm/s). 

The y-component of the liquid velocity is shown in Fig. 5 (b1). Owing to the presence of melt in between the solid shells,

the normal liquid velocities on the surface of Sections 1 and 2 are equal to 0 m/s. On the other hand, positive velocities

normal to the strand surface are found in sub-domain A of Sections 3 and 4 . The velocity magnitude reaches 40 μm/s in

Section 3 and 10 μm/s in Section 4. In sub-domain B, owing to the contraction state, negative velocity curves (with constant

negative slopes) are observed in both Sections 3 and 4. As expected, due to the larger outflow obtained in sub-domain A of

Section 3, the equivalent average velocity in sub-domain B is larger in Section 3 than in Section 4. 

During MR, deformation of the viscoplastic network causes liquid to be squeezed out of the solid skeleton. As shown in

Fig. 5 (b1), part of the flow moves towards the surface of the strand and leaves through sub-domain A. As the liquid moves,

it starts to drag the solid structure with it and both phases tend to move with similar velocities relatively far from the

deformation zone. This is demonstrated in Fig. 5 (a2) and (b2), where the x- and y-components of the solid velocity along

the strand surface between two rolls are presented. It can be seen that, along the strand surface, the solid phase has similar

velocity curves as the liquid phase depicted in Fig. 5 (a1) and (b1). 

4.3. Estimated strand surface deflection between rolls 

Fig. 6 shows the estimated normalized strand surface deflection between the rolls of Sections 3 and 4 . The profiles are

calculated by multiplying the outward solid velocity in each cell along the strand surface with a set period of time (in this

case unity, for simplicity). In each cell, the calculated distance is summed over the distance calculated in the previous cell.

This assumes that, once the velocity normal to the strand surface is non-zero, the strand surface has already been deflected
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Fig. 6. Steady-state results for the estimated normalized strand surface deflection between rolls for Sections 3 and 4 . 

Fig. 7. Steady-state result for normalized macrosegregation. The black line represents c mix / c 0 − 1 = 0 . The white line represents the viscoplastic threshold. 

 

 

 

 

 

 

 

and should be proportional to the normal velocity in this region. The idea is to compare qualitatively the potential deflection

in two different sections based on the velocity of the solid phase on the surfaces between the rolls. 

The maximum strand deflection in Section 4 is smaller than in Section 3 because it becomes increasingly more difficult 

for the flow to traverse the solid shell as solid fraction increases towards the end of the domain. 

In Fig. 6 , the first half of the curves is given by the time integral of the velocity profile from sub-domain A, which means

that the strand dilatation is calculated directly from the outflow caused by the compression of the solid skeleton during MR. 

The second half of the curve (sub-domain B) in Fig. 6 is given by the time integral of the velocity profile defined in Eq. (22) .

As a result, the corresponding strand surface deflection becomes a parabola. 

4.4. Macrosegregation distribution 

Fig. 7 shows the distribution of the normalized macrosegregation for the present case. The macrosegregation pattern has 

been normalized ( c mix / c 0 − 1 ) so that the initial alloy composition is given by the value 0, whereas positive or negative

macrosegregation is illustrated with positive or negative values, respectively. 

In Section 1, after passing the first pair of rolls, a slightly positive macrosegregation forms, which progresses away from 

the wall, in front of the solid shell (see Fig. 3 ). Then, closer to the second pair of rolls (before Section 2), a positive macroseg-

regation is predicted near the strand surface. After entering Section 2, a positive macrosegregation can be identified along 

the slab centerline, particularly near the kissing point, where a significant positive macrosegregation region arises. Near the 

strand surface, macrosegregation has slightly larger values than in the neighboring inward regions, which is called “inverse 

macrosegregation” [29] . In between the strand surface and the centerline, negative macrosegregation can be seen. 

Fig. 8 shows that the steady-state results for the normalized macrosegregation ( c mix / c 0 – 1 × y) along the vertical direc-

tion ( y axis) at x = 0.7 m (in Section 4). The integral of c mix / c 0 – 1 is very close to 0, which means that solute is conserved

during the simulation. 
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Fig. 8. Steady-state results for the normalized macrosegregation along the vertical direction ( y axis) at x = 0.7 m. 

Table 7 

Difference between volumetric 

flow rate leaving and entering 

sub-domains A and B. 

Sections Difference 

1 0 m 

3 /s 

2 0 m 

3 /s 

3 1.5146 ×10 −9 m 

3 /s 

4 3.7917 ×10 −10 m 

3 /s 

 

 

 

 

 

 

 

 

 

 

 

5. Discussion 

5.1. Mass conservation analysis 

The current modeling strategy has been devised to capture the strand contraction/dilatation state in a fixed geometry. 

It employs Robin type boundary conditions in the patches between the rolls. It is thus critical to make sure that mass is

conserved in the system. 

Mass conservation has been tested between sub-domains A and B for all the patches where the custom boundary con- 

ditions have been implemented. The difference between the volumetric flow rate leaving sub-domains A and entering sub- 

domains B in each section is shown in Table 7 . Note that the model assumes constant densities in both phases, so the

volumetric flow rate parameter is employed in this analysis. The results are obtained after the simulation reaches a steady- 

state solution, at t = 145 s. 

In Sections 1 and 2 , the difference is equal to zero because viscoplastic deformation does not occur and the patches

between rolls behave as walls. In Sections 3 and 4 , the difference is under 1.5146 ×10 −9 m 

3 /s, which is below computer

round-off and iterative convergence errors. Both solute and number density conservations have also been confirmed over 

the custom boundary conditions. 

5.2. Strand surface deflection analysis 

The velocity profile at the strand surface along sub-domain A is directly obtained from the local volumetric flow rate of

the solid phase calculated in that patch. This means that the strand deflection estimation is a direct reflection of the mush

deformation during MR. A large deformation intensity in Section 3 leads to a large deflection. The deflection magnitude 

reduces as solidification progresses. 

On the other hand, in sub-domain B, the velocity is reconstructed from the average total flux obtained in sub-domain A.

Without any changes, this would result in a constant velocity inflow in sub-domain B, which would cause a linear strand

surface deflection (with negative constant slope). This does not seem plausible. As a result, in this work, the velocity inflow

in sub-domain B has been set with a linear function, as explained in Eq. (22) , and shown in Fig. 5 (b2). This results in a

parabola for the strand surface deflection, as shown on the second half of Fig. 6 . Note that the length ratio between sub-
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Fig. 9. Steady-state result of the liquid velocity in the x direction. The arrows represent the relative velocity between solid and liquid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

domains A and B can be changed in the current approach. Here, for the sake of simplicity, the length ratio has been kept to

1 (i.e., both patches have the same length). 

Overall, the strand deflection profiles shown in Fig. 6 seem to agree with the deflection profile generally assumed in the

literature [ 18 , 21 , 28 ]. This is achieved without the need to enforce a strand deflection profile as a boundary condition. Even

when larger strand deformations take place, the profiles seem to maintain a similar trend. Even though currently the strand 

deflection is only originated from MR, the model can be extended to capture the bulging phenomena that occurs when the

metallostatic pressure present in continuous casting processes is considered. Nevertheless, further research should be done 

in this area to validate the present model. 

5.3. Liquid and relative velocity results 

In Fig. 9 , the steady-state results of the x-component of the liquid velocity are illustrated. The light blue areas along

the centerline, before each pair of rolls, reveal that the liquid velocity along the casting direction reduces considerably each 

time they approach a pair of rolls. This is also consistent with the black arrows shown in Fig. 9 , which represent the relative

velocity between the solid and the liquid phases. 

Two mechanisms are behind the blue regions. Before a fully coherent mush has emerged (i.e. Sections 1 and 2 ), the

growth of the solid shell into a smaller domain (i.e. MR under each pair of rolls) leads to a relative motion between the two

phases where the liquid phase slows down as the solid shells approach each other in the center. After a coherent mush has

been formed (i.e. Sections 3 and 4 ), compression-induced squeezing out of melt during mush deformation occurs. In this 

case, melt is pressed out of the solid skeleton. This flow is mostly directed upstream, along the centerline, which is where

solid fraction is typically lower. As a result, the black arrows before each pair of rolls point downstream, which indicates

that the x-component of the velocity of the solid phase is larger than the x-component of the velocity of the liquid phase.

The liquid velocity value is still positive (light blue areas) because the casting is moving downstream with a larger velocity.

This phenomenon requires the strand to be totally in the viscoplastic regime, and thus does not occur before the 3rd pair

of rolls where melt is still present in between the solid shells ( Fig. 3 ). 

In Fig. 9 , black arrows are also observed pointing towards the strand surface under the 3rd and 4th pair of rolls. This

demonstrates that, during the compression of the solid skeleton, the melt is not only squeezed out upstream (in relation to

the overall casting speed), but some melt also travels through the coherent network towards the strand surface. This results 

in the strand dilatation state discussed above. Closer to the strand surface, the arrows disappear because the melt drags the

solid until they move with the same speed. 

5.4. Understanding mush deformation 

The mush deformation can be analyzed by taking the divergence of the solid velocity. A negative divergence of the solid

velocity indicates that the solid skeleton in the mushy zone is compressing. As a result, solute-rich melt is expelled out of

the region and negative segregation appears locally. On the other hand, a positive divergence of the solid velocity indicates 

the expansion of the solid skeleton, which is reflected by the inflow of solute-rich melt locally and a positive segregation.

This is schematically illustrated in Fig. 10 . 

Steady-state results of the divergence of the solid velocity are presented in Fig. 11 . The black and white lines represent

the zero solid divergence and the viscoplastic threshold, respectively. Under the 1st pair of rolls, and in front of the solid

shell, a blue area can be identified, which means that the divergence of the solid velocity is negative. This is due to the

intense solidification occurring under the first pair of rolls and in Section 1, which creates a solid shell growing towards the

centerline and a melt feeding flow directed towards the solid shell. As a result, positive segregation develops at the edge of

the solid shell, as shown in Fig. 7 . 

The red zone highlighted in the insert of Fig. 11 corresponds to a positive divergence of the solid velocity as a result of

expansion of the solid skeleton. This zone indicates that an influx of melt occurred locally. In this case, the influx of melt is

due to the compression of the solid skeleton, which drives solute-rich melt upstream (in relation to the casting speed). This
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Fig. 10. Effect of solid deformation on the divergence of solid velocity and on macrosegregation. 

Fig. 11. Steady-state results of the divergence of the solid velocity. 
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is supported by the relative arrows shown in Fig. 9 and the intense centerline positive macrosegregation observed before 

the 3rd pair of rolls in Fig. 7 . As the casting continues to move downstream, this positive macrosegregation continues, until

a new compression zone appears under the 4th pair of rolls, where a similar mechanism occurs. 

Under both the 3rd and 4th pair of rolls, negative solid velocity divergence zones are found, which means compression

of the solid skeleton. This is due to the pressing forces of the rolls during MR. The negative solid velocity divergence is

greater in the 3rd pair of rolls than in the 4th, which supports the strand surface deflection difference estimated in Fig. 6 .

In between the rolls, the solid velocity divergence is initially positive (which means expansion of the solid skeleton) right 

after the 3rd pair of rolls, and then decreases as it approaches the following pair of rolls and becomes negative again (as

identified by the black line). This agrees with the strand dilatation/contraction mechanism discussed before. This successive 

alternation between negative (under the rolls) and positive (between the rolls) solid velocity divergence was also reported 

in Fachinotti et al. [21] in their final distribution results. 

6. Conclusion 

The strand deflection induced by solid deformation during MR has been modelled by means of a two-phase Eulerian–

Eulerian volume-average model with fixed mesh. The conclusions are as follows: 

1) The modeling strategy used to account for the contraction/dilatation state during MR in a fixed geometry seems to 

produce plausible results for the setup considered here. 

2) The magnitude of the strand deflection underlying the contraction/dilatation states correlates well with the divergence 

of the solid velocity and magnitude of the mush deformation during the casting process. 

3) The maximum strand deflections in Section 3 and Section 4 are 0.08 mm and 0.015 mm, respectively. The maximum 

strand deflection in Section 4 is smaller than in Section 3 because the shell is harder to deform when the solid fraction

increases. This means that the deflection magnitude reduces as solidification progresses. 

4) Due to the deformation of the solid skeleton during MR, a positive centerline macrosegregation has been found, which 

is due to the compression-induced squeezing out of solute-rich melt against casting direction, along the centerline. This 

is particularly significant when, upstream of the compression zone, the solid fraction is under the viscoplastic regime. 
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5) The negative divergence of solid velocity indicates that the solid skeleton in the mushy zone is compressing. As a result,

solute-rich melt is expelled out of the region and negative segregation appears locally. On the other hand, positive diver- 

gence of solid velocity indicates the expansion of the solid skeleton, which is reflected by the inflow of solute-rich melt

locally and a positive segregation. Such results support the understanding of the macrosegregation distribution, as well 

as the strand deflection states. 

The present model has been analyzed in a simplified geometry that accounts for strand deflection as a result of the

deformation of the dendritic network during MR. However, it can be easily extended to more practical applications, such as 

continuous casting of steel, where bulging due to metallostatic pressure also plays a big role on the outcome. Furthermore, 

there is still a need to validate the model against experimental results, although this is difficult to achieve due to the scarcity

of the available data. This should not detract from the current work, which is meant to add a novel numerical framework

by which new studies can be carried out on strand deflection and bulging, thereby adding to the limited understanding in

the topic. 
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Appendix 

The definition of volumetric flow rate 

For the finite volume method (FVM), the flow rate on the face of each cell is the most fundamental parameter, which can

participate in the calculation for solving the conservation equations of mass, momentum, species, and enthalpy in this work. 

Taking the momentum conservation equation as an example, the role of flow rate in the calculation process is illustrated as

follows. Firstly, to use the finite volume method, the momentum equation needs to be written in integral form, as shown in

Eq. (A1) . ∫ 
V 

[
∂ ( g i ρi v i ) 

∂t 
+ ∇ · ( g i ρi v i v i ) 

]
dV = 

∫ 
V 

[
−g i ∇p + ∇ ·

(
g i τ

eff
i 

)
∓ U ls 

]
dV (A1) 

In Eq. (A1) , the term of 
∫ 

V [ ∇ · ( g i ρi v i v i ) ] dV is further analyzed. According to the Gauss theorem, the surface integral

of the physical quantity on the cell face is equal to the volume integral of the divergence of the physical quantity in the

volume enclosed by the cell face. So, the term of 
∫ 

V [ ∇ · ( g i ρi v i v i ) ] dV in Eq. (A1) can be transformed into 
∮ 
∂V ( g i ρi v i v i ) · dS .

The dS is the infinitesimal area vector. Because a volume cell is always made up of a finite number of faces, the term of∫ 
V [ ∇ · ( g i ρi v i v i ) ] dV in Eq. (A1) can be further defined, as shown in Eq. (A2) . ∫ 

V [ ∇ · ( g i ρi v i v i ) ] d V = 

∮ 
∂V ( g i ρi v i v i ) · d S 

= 

∑ 

f 

∫ 
S f 

( g i ρi v i v i ) · d S f = 

∑ 

f ( g i ρi v i v i ) f · S f 
(A2) 

Here, S f is the area vector for one volume cell. The term of ( g i ρi v i v i ) f is derived as follows. 

( g i ρi v i v i ) f = 

1 

mag ( S f ) 

∫ 
S f 

( g i ρi v i v i ) · d S f (A3) 

where 

( g i ρi v i v i ) f ≈ ( ( g i ρi ) f ( v i ) f ( v i ) f ) (A4) 

Then, the Eq. (A2) is approximated as follows. ∑ 

f 
( g i ρi v i v i ) f · S f ≈

∑ 

f 
( ( g i ρi ) f ( v i ) f ( v i ) f ) · S f (A5) 
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Finally, the Eq. (A5) can be further expressed as follows. ∑ 

f ( ( g i ρi ) f ( v i ) f ( v i ) f ) · S f = 

∑ 

f ( ( g i ρi ) f ( v i ) f ( ( v i ) f · S f ) ) 

= 

∑ 

f 

(
( g i ρi ) f ( v i ) f φf ( i ) 

) (A6) 

Here, the ϕf(i) is the volumetric flow rate for each phase, 
∑ 

f ( ( v i ) f φf(i) ) is the sum of the product of the flow rate and

the velocity on the face contained in each cell. Therefore, the volumetric flow rate ( ϕf(i) ), as a most fundamental parameter,

can be extracted and utilized in this work to realize the development of boundary conditions. 
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