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A novel dynamic mesh-based approach is proposed to simulate shape change of the deposit front during electrodeposition. Primary
and secondary current distributions are computed. The proposed numerical model is tested on a two dimensional system for which
analytical solutions was previously presented by Subramanian and White [J. Electrochem. Soc., 2002, C498-C505]. Firstly, calcula-
tions are carried out only in the electrolyte where the deposit front is considered to be the boundary of the computational domain.
Secondly, a fully coupled simulation is carried out, and field structures such as electric potential and electric current density are
computed both in the electrolyte and deposit. It is found that the deposit region must be included in calculations of primary current
distribution as the magnitude of electric potential is inevitably non-zero at the deposit front during electrodeposition. However, the
deposit front can be accurately tracked considering secondary current distribution with or without involving the deposit region in our
calculations. All transient results are shown through animations in the supplemental materials.
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Electrodeposition is an extensively used technique to produce met-
als, alloys, and composite materials. The main components of an elec-
trodeposition cell are two metal electrodes and an electrolyte subjected
to an electric power supply. The electrolyte is an ionic conductor where
chemical species including the metal of interest are in the liquid state.
The metal ions are reduced to metal atoms through the electrochem-
ical reduction reaction. Whereby, the metallic ions in the electrolyte
are converted to the deposited metal on a cathode surface.1,2

Electrodeposition is a multi-scale/multi-phase/multi-physics pro-
cess that involves several phenomena and their interactions. Heat trans-
fer, chemical and electrochemical reactions, electric current density,
ionic concentrations, and interactions between flow and magnetic field
as known as magnetohydrodynamics (MHD) play decisive roles in the
process. The thickness and shape (profile) of the deposited materials
are indicators which are often used to determine the performance of
the process. Therefore, it is of great importance to develop transient
models which enables us to track the deposit-electrolyte interface and
to compute transport phenomena in the electrolyte.

An extensive review of the computation of current distribution in-
cluding primary and secondary during electrodeposition was given by
Dukovic.3 The primary current distribution ignores influences of con-
centration of ions in the electrolyte and electrode kinetics on the distri-
bution of electric current density in the electrochemical cell. Therefore,
the electrical resistance in the electrolyte is assumed to obey Ohm’s
law. Similarly, the secondary current distribution ignores composition
variations in the electrolyte. Accordingly, Ohm’s law is applied to
solve Laplace equation, in which an effective electrical conductivity
for the uniform electrolyte solution is considered. However, the po-
tential drop at the electrode-electrolyte interface as a consequence of
Faradaic reactions (electrode kinetics) is taken into account through
Butler-Vomer formula.4

Customarily, Finite Element Method (FEM)5–7 or Finite Difference
Method (FDM) was applied to discretize the governing equations.8–13

The numerical algorithm must include a procedure to track the de-
position front. For that purpose, Monte Carlo technique,12 Phase-
Field modeling,13 Boundary Element Method (BEM),7 and Level-Set
method8–11 were previously utilized. The governing partial differential
equations (PDE) demand the thermodynamic statement of free energy
or entropy using Monte Carlo or Phase-Field modeling. The PDE are
reformulated as integral equations in BEM method that in turn ex-
erts a significant restriction on the range and generality of non-linear
problems to which the method can effectively be applied.14

Generally, simulation of electrodeposition for large scale pro-
cesses requires computation of the flow field. The Level-Set method is
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the most suitable procedure amongst the aforementioned techniques.
Level-Set9 as well as Volume of Fluid (VOF)15,16 are adequate meth-
ods to calculate the interactions of field structures such as electric,
heat, and flow fields in the presence of an interface between two ma-
terials. However, special care must be taken to model the electric cur-
rent density at the interface. A diffuse interface is considered as a
smooth transition layer with electrical conductivity between the con-
ductivities of the electrolyte and deposit. This region covers several
computational cells spanning the exact location of the interface. The
complexity of the method arises once a specific condition (e.g. Butler-
Volmer kinetics for secondary current distribution) must be applied at
the deposit-electrolyte interface.9

Here, we propose a novel approach using the dynamic mesh tech-
nique for transient simulation of electrodeposition. The Finite Volume
Method (FVM) is applied to discretize governing equations. FVM au-
tomatically satisfies the conservation of the desired variables such as
mass, heat, concentration of ions and electric current density.17 Pre-
viously, we successfully applied the dynamic mesh approach to study
shape change during the melting of an ESR electrode considering
interactions between flow, thermal, and electromagnetic fields.18 In-
deed, the proposed dynamic mesh based model enables us to construct
a sharp deposit-electrolyte interface that is thoroughly accessible to
assign any sort of boundary conditions for the fields of interest e.g.
flow, concentration of ions, electric current density, etc. Furthermore,
computations of transport phenomena can be carried out both in the
electrolyte and deposit.

In this study, the proposed model is examined on a two dimen-
sional system for which analytical solutions was previously presented
by Subramanian and White.19 Both primary and secondary current dis-
tributions are evaluated. Following Subramanian and White,19 only the
electric potential field is solved. Firstly, the computations are carried
out in the electrolyte where the moving deposit-electrolyte is con-
sidered as the boundary of the computational domain. Secondly, we
calculate field structures in both electrolyte and deposit in which the
moving interface is modeled as a conjugate wall that fully couples
two separated regions. The latter helps us to scrutinize the necessity
of involving the deposit region in the modeling of electrodeposition
processes.

Modeling

Subramanian and White19 developed a semi-analytical method
considering both primary and secondary current distributions to sim-
ulate shape change during electrodeposition. They investigated a 2D
electrochemical cell that is shown in Fig. 1. Their study is considered
as the benchmark to assess our modeling approach. As shown in Fig. 1,
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Figure 1. Configuration of the computational domain and boundaries are il-
lustrated. n is the normal vector to the deposit front.

the cathode (−) is located at the bottom of the cell, whereas the anode
(+) is coplanar with the upper insulating plane. The side walls are
electrically insulated. The system operates under a constant applied
voltage where the composition of the electrolytic solution is assumed
to remain uniform. The electrodeposition occurs at the cathode sur-
face.

The speed of growing deposit (ud) is governed by the magnitude
of current density (j) normal to the deposit-electrolyte interface as
follows:

ud = − M

zFρ
j [1]

Where M is the molecular weight, z is number of exchanged electrons,
F is Faraday constant, and ρ is the density of the deposited material. Of
note, the correlation M

zFρ
in Eq. 1, is generally a constant value which

is dependent on material properties. The constant has no influence on
the shape (profile) of the growing deposit. However, the constant can
influence the required time to deposit a certain amount of material.

Electric current density field.—The conservation equation of elec-
tric current density is given by,

∇ · (−κ∇ϕ) = 0 [2]

The electric current density is linearly dependent on the electric field
(E = −∇ϕ) that in turn is governed by the gradient of the electric
potential (ϕ),

j = κ�E [3]

In Eqs. 2 and 3, the correlation is referred as the electrical conductivity
(κ).

The value of electric potential is fixed at the anode. The flux of
electric potential (≈ electric current density) is set to zero at insulating
walls. Here, the cathode is of prime interest where electrodeposition
takes place. The major difference between the primary and secondary
current distribution is the treatment of boundary condition for elec-
tric potential at the growing deposit boundary (cathode). The value of
electric potential is set to zero at the cathode in primary current calcula-
tion. However, the current density (≈ flux of electric potential) obeys
Butler-Volmer kinetics at the cathode surface for secondary current

Table I. Parameters used in our calculations. Dimensionless
form of the equations regarding to primary and secondary
current distributions are solved. Considering the dimensionless
parameters, the system well represents the cathodic deposition of
copper in copper sulfate solution at room temperature.

Parameter

R [J K−1mol−1] 8.314546
T [K] 293

F [A s mol−1] 96485
k [S m−1] 5.1
j0 [A m−2] 5

L [m] 0.01
z 2
α 0.5
I0 1
ϕ∗

A 1
ν 0.48

distribution as follows:

j = j0

[
eαzFϕ/RT − e−(1−α)zFϕ/RT

]
[4]

Where j0 is exchange current density, R is universal gas constant, T is
temperature, and α denotes charge transfer coefficient.

Subramanian and White19 reformulated the given standard equa-
tions to dimensionless forms. The dimensionless variables are as fol-
lows:

ϕ∗ = zFϕ

RT
[5]

∂ϕ∗

∂n
= −I0

[
eαϕ∗ − e−(1−α)ϕ∗]

[6]

Where, n is the vector normal to the growing deposit surface, ϕ∗ de-
notes the dimensionless electric potential, I0 = j0zLF

κRT , and L is the
characteristic length of the system.

For further information regarding to the derivation of the dimen-
sionless form of the governing equations, the interested readers are
highly encouraged to consult Ref. 19.

Dynamic mesh.—Dynamic mesh is a powerful technique to model
deformable boundaries in which the mesh nodes are re-adjusted to
new locations. One should keep in mind that all modeling equations
presented in this section have no influence on the growing deposited
velocity or any other transport parameter such as electric potential.
They only serve to update the mesh inside the continuously deforming
computational domain.

The general transport equation including advection and diffusion
for ζ as an arbitrary variable (e.g. heat, concentration of ion, etc.) is
expressed as:

∂ρζ

∂t
+ ∇ · (ρuζ ) = ∇ · (�∇ζ ) + Sζ [7]

Where u denotes velocity, � is the diffusion coefficient, t is time, and
Sζ is the volumetric source term. In order to utilize this technique, all
governing transport equations must take into account the velocity of
the grid boundary (ug).20 Correspondingly, the integral form of Eq. 7
with respect to dynamic mesh is given by:

∂

∂t

∫
V

ρζdV +
∫

�

ρζ
(
�u − −→ug

) · d �S =
∫

�

�∇ζ · d�S +
∫

V
Sζ dV [8]

Where � represents the boundary of the control (V), and �S denotes
the area vector. In Eq. 8, the unsteady term accounts for the varia-
tion in the size of each computational cell during the calculation, and
subsequently that is computed using the grid velocity21 as follows:

∂V

∂t
=

∑n f

i
�ui · �Si [9]
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Figure 2. Considering primary current distribution, snapshots at different times of field structures are shown: (First row) The magnitude and streamlines of the
dimensionless electric current density ( j∗ = j/ j0); (Second row) Contour of dimensionless electric potential and isolines of the dimensionless electric potential
including 0.2, 0.4, 0.6, and 0.9 are shown. (Third row) For illustrative purposes, the deformation of the coarse mesh is shown. The arrow indicates time-advancement.

Where nf is the number of faces which belongs to the control volume,
�ui and �Si are the velocity and area vector of i face respectively.

Herein, the smoothing scheme is applied to handle the boundary
motion.20 Accordingly, the interior nodes of the computational domain
are repositioned as the boundary (growing deposit) moves. They can be
re-located but the connectivity between them must remain unchanged.
During the transient calculations, the interior nodes conform to a net-
work of interconnected springs, and consequently, their positions are
updated at each time step based on displacements of boundary nodes.
The displacements of the interior nodes ( �y = ∫

�uidt ) are determined
according to the linearly elastic solid model.20 The following set of

equations govern the mesh motion,

∇ · σ (�y) = 0 [10]

σ (�y) = λ (trε (�y)) I + 2με (�y) [11]

ε (�y) = 1

2

(∇�y + (∇�y)T )
[12]

Where σ is the stress tensor that is composed of strain tensor (ε), the
trace of strain tensor (trε), identity matrix (I), shear modulus (μ), and
Lame’s first parameter (λ). Specifying the ratio (μ/λ) is sufficient to
solve the whole set of Eqs. 10–12 that is defined through Poisson’s
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Figure 3. Considering primary current distribution for coupled simulation, snapshots at different times of field structures are shown: (First row) The magnitude and
streamlines of the dimensionless electric current density ( j∗ = j/ j0); (Second row) Contour of dimensionless electric potential and isolines of the dimensionless
electric potential including 0.2, 0.4, 0.6, and 0.9 are shown. The arrow indicates time-advancement.

ratio (ν),20

ν = 1

2
(
1 + μ

λ

) [13]

The ratio is a user-input parameter. To preserve the orthogonal quality
of the mesh, we recommend assigning the value of ν in the range
between 0.45 and 0.5.

Boundary conditions for Eqs. 10–12 are straightforward. At the
moving deposit-electrolyte interface the displacement is given that is
calculated from Eq. 1. At the upper insulating plane and anode, the
displacement is set to zero. Furthermore, the displacement normal to
the boundary as well as stress tangential to the boundary is set to zero
at insulating side-walls.

Once again, it must be emphasized that the linearly elastic solid
model has no influence on the growing deposited velocity or any other
transport parameter such as electric potential. The model solely serves
to update the mesh by re-location of interior nodes at each time step
in the perpetually deforming computational domain.

Other settings.—The commercial CFD software, ANSYS
FLUENT v.17.1, was employed to carry out our simulations. The
software comprises the dynamic mesh technique for the simulation
of displacements of boundaries. User-defined functions (UDF) are
implemented for special modeling equations such as Butler-Volmer
formula, speed of growing deposit, etc. The model is configured based
on the study which was conducted by Subramanian and White.19 Ac-
cordingly, governing equations are solved in the dimensionless form.
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Figure 4. Considering primary current distribution, (a) the dimensionless deposit thickness (H = h/L) is plotted versus the dimensionless distance along the
cathode (X = x/L) to illustrate the transient shape change during electrodeposition; (b) dimensionless electric potential on the deposit front is plotted versus the
dimensionless distance along the cathode (X = x/L).

The geometry is illustrated in Fig. 1. The computational domain ini-
tially contains structured equisized elements. To explore the influence
of grid size on the outcome, two different sizes of mesh element are
examined namely coarse mesh and fine mesh. The characteristic size
of the domain is: L = 1 cm. The coarse mesh computational domain is
filled by 2500 elements with the size of 0.2 mm. The fine mesh contains
10000 elements with the element size of 0.1 mm. Furthermore, another
investigation namely coupled is carried out to calculate field structures
in both electrolyte and deposit. For the latter, it is assumed that the
initial deposit height is L/2 whereas the initial electrolyte height is
kept to L. In addition, it is assumed that the electrical conductivity of
deposit is five orders of magnitude (105) higher than that of electrolyte.
Parameters used in our calculations are listed in Table I. The electric
potential at the anode (ϕ∗

A = 1) is fixed in all of our calculations.

Results and Discussion

Transient calculations are performed and the deposit front, de-
formation of the grid in the computational domain, and field struc-
tures such as electric current density and electric potential were

captured. It is not possible to effectively demonstrate those pa-
rameters using images although some snapshots of different times
are shown in this section. We highly encourage readers to ob-
serve supplemental materials related to the present paper. For all
case studies, the aforementioned parameters are shown through
animations.

Primary current distribution.—The electric current density flows
from anode (+) toward the cathode (−) which is the deposit front
where the electric potential is set to zero. Demonstratively, snapshots
at different times of the magnitude of the electric current density and
the trajectory of the electric current are shown in Fig. 2. The maximum
amount of electric current density is near the edge of anode. As de-
posit thickness increases, the amount of electric current density which
flows through the electrolyte increase especially near the upper edge
of deposit front. At constant applied voltage, with the increase of de-
posit thickness the total electrical resistance of the system decreases.
Consequently, a higher amount of electric current is allowed to flow
through the system. Streamlines of electric current density are also
shown to track the trajectory of electric current. The electric current
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Figure 5. Considering secondary current distribution for coupled simulation, snapshots at different times of field structures are shown: (First row) The magnitude
and streamlines of the dimensionless electric current density ( j∗ = j/ j0); (Second row) Contour of dimensionless electric potential and isolines of the dimensionless
electric potential including 0.2, 0.4, 0.6, and 0.9 are shown. The arrow indicates time-advancement.

density is perpendicular to the surface of deposit front all along the
surface. As illustrated in Fig. 2, the electric potential field continuously
alters as the deposit front moves forward. The equipotential lines are
always perpendicular to the stream lines of electric current density at
each point inside the electrolyte. For illustrative purposes, snapshots
at different times of the evolving coarse grid are shown in Fig. 2.
The deformation of deposit front is imitated by the nearby mesh that
in turn enables us to achieve high orthogonality of mesh elements,
and consequently, to preserve the quality of mesh. All transient re-
sults are provided in supplemental materials. Readers are encouraged
to observe “Primary-Coarse-Mesh.avi” and “Primary-Fine-Mesh.avi”
files.

Fig. 3 illustrates modeling results of a coupled simulation for which
calculations of field structures are carried out both in the electrolyte

and deposit. The electric potential is set zero at the cathode. Addition-
ally, the continuous transition of the electric potential is calculated at
the deposit front during electrodeposition. As a consequence of ignor-
ing the formation of electric double layer (EDL) in the calculation of
primary current distribution, no electrical resistance exists at the de-
posit front. In the modeling point of view, the deposit front is treated as
a conjugate wall where the electric potential on both sides (electrolyte
side and deposit side) are equal to each other. Snapshots at different
times of electric current density and electric potential fields are shown
in Fig. 3. Similar to the previous calculation, the current density is
perpendicular to the surface of deposit front. However, streamlines
of electric current bend just at the moment they enter to the non-
flat deposit front. As shown in Fig. 3, the electric field (gradient of
electric potential) remains very weak in the deposit region during the
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Figure 6. Considering secondary current distribution, (a) dimensionless electric potential on the deposit front is plotted versus the dimensionless distance along
the cathode (X = x/L); (b) the dimensionless deposit thickness (H = h/L) is plotted versus the dimensionless distance along the cathode (X = x/L) to illustrate
the transient shape change during electrodeposition.

process. All transient results of this system are provided in supple-
mental materials as “Primary-Coupled.avi”.

A comparison is made between the calculated deposition thick-
ness using our model and that of Subramanian and White19 as shown
in Fig. 4a. Computed results using fine or course meshes are relatively
similar. Ignoring the deposit region in our calculations, the discrep-
ancy between our modeling results and analytical results increase as
the thickness of deposition increases. Principally, assuming zero value
for the electric potential at the deposit front is erroneous although this
assumption may greatly simplify the problem. It was pointed out that
the error in this approximation drastically increases as the electric
current density increases.9 A good agreement between our modeling
results and analytical results is obtained for the coupled simulation.
As shown in Fig. 4b, the electric potential at deposit front is minimal
but non-zero. Furthermore, the magnitude of electric potential contin-
uously changes along the deposit front during the electrodeposition
process. In fact, the magnitude of electric potential is always non-zero
at the deposit front as the existence of an electric field (gradient of elec-
tric potential) is essential to flow electric current through the deposit
region.

Secondary current distribution.—Here, results regarding to the
secondary current distribution are presented in a similar manner to re-
sults of primary current distribution. Calculations considering coarse
mesh, fine mesh, and coupled were carried out. We suggest observing
“Secondary-Coarse-Mesh.avi” and “Secondary-Fine-Mesh.avi” files
which are provided in supplemental materials where variations in field
structures in the electrolyte during electrodeposition are demonstrated.
Snapshots at different times of electric current density and electric po-
tential fields in both electrolyte and deposit are shown in Fig. 5. Those
are obtained through the coupled simulation. From a modeling point of
view, the deposit front is a conjugate wall where the influence of the for-
mation of EDL (more precisely Butler-Volmer kinetics) is implicitly
modeled. The fluxes of electric potential (≈ electric current density)
on both sides of the conjugate wall (electrolyte side and deposit side)
are equal to each other, whereas the electric potential magnitudes are
unequal. Streamlines of electric current density indicate the trajectory
of the electric current density. They are perpendicular to equipotential
lines at each point inside the electrolyte. At the very deposit-electrolyte
interface, the electric current density is perpendicular to the surface
of deposit front where the flux of electric potential is specified. On
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the other hand, a noteworthy amount of electric current density flows
tangential to the deposit front adjacent to deposit-electrolyte inter-
face in the electrolyte region. Therefore, the electrical streamlines do
not appear completely perpendicular to the deposit front in Fig. 5. The
variation in electric potential at deposit front during the process is plot-
ted in Fig. 6a. A notable difference in electric potential is recognized
along the surface of deposit front where electric current can flow in
tangential direction to the deposit front in the electrolyte region (more
precisely outside of the EDL in the bulk of electrolyte). As shown in
Fig. 6b, computed thickness of deposition layer is compared with ana-
lytical results.19 A good agreement is observed between our modeling
results including coarse mesh, fine mesh, and coupled with analytical
results. This implies that, it is not necessary to include calculations
of field structures in the deposit region considering secondary current
distribution to capture transient thickness of deposition layer. All tran-
sient results regarding to secondary current distributions are available
in supplemental materials including “Secondary-Coarse-Mesh.avi”,
“Secondary-Fine-Mesh.avi”, and “Secondary-Coupled.avi”.

It is well-known that a higher uniformity for the thickness of deposit
along the cathode can be achieved for secondary current distribution

than that of primary current distribution.2,3 This implies that the elec-
tric current density is more evenly distributed along the deposit front
for secondary current distribution compared to that of primary current
distribution. The variation in the magnitude of electric current den-
sity at deposit front during the process is plotted in Fig. 7 considering
primary and secondary current distributions. The total electrical resis-
tance of the system decreases as deposit thickness increases. Conse-
quently, the amount of electric current density which flows through the
system increases as time advances. The secondary current distribution
as shown in Fig. 7b exhibits a higher uniformity of the distribution of
electric current density along the cathode compared to that of primary
current distribution which is shown in Fig. 7a.

Over the past decade, authors of the present study developed nu-
merous models to study transport of ions by advection, diffusion,
and electro-migration.22–25 In addition, the dynamic mesh tool was
successfully used to study shape change during the melting of an
ESR electrode considering interactions between flow, thermal, and
electromagnetic fields.18 We believe that the proposed dynamic mesh
model has a promising future to accurately handle the aforementioned
transport phenomena. In the near future, we plan to include those

Figure 7. Normalized electric current density on the deposit front is plotted versus the dimensionless distance along the cathode (X = x/L). jave denotes the average
current density that flows across the deposit front. The arrow indicates time-advancement. (a) Primary current distribution; (b) Secondary current distribution.
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modeling features to investigate electrodeposition during actual in-
dustrial processes.13,26,27

Summary

We propose a novel approach using dynamic mesh technique to
model shape change during electrodeposition. The model is tested on
a two dimensional system for which analytical solutions is available.
Primary and secondary current distributions are computed. The pro-
posed transient model enables us to track the deposit front while field
structures such as electric potential and electric current density fields
are continuously evolving. This numerical approach requires updating
of the mesh on each time step. For that purpose, a linearly elastic solid
model is employed to continuously relocate interior nodes within the
computational domain. Firstly, calculations are carried out only in the
electrolyte considering different mesh sizes where the deposit front is
the boundary of the computational domain. Secondly, a fully coupled
simulation is carried out to compute field structures both in the elec-
trolyte and deposit. It is found that incorporating the deposit region
(coupled simulation) considering primary current distribution is nec-
essary to correctly capture the deposit thickness as the magnitude of
electric potential is unavoidably non-zero at the deposit front. How-
ever, the deposit front is accurately tracked considering secondary
current distribution with or without involving the deposit region in
our calculations. Although the current study is purely a fundamen-
tal research, we believe that the proposed approach has a promising
future to simulate actual industrial processes involving electrodeposi-
tion phenomenon. All transient results are shown through animations
in supplemental materials. Therefore, we highly recommend readers
to observe supplemental materials related to the present paper.
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