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A B S T R A C T

A novel volume of fluid (VOF) based approach is proposed to simulate the transient shape change of deposit
front during electrodeposition considering secondary current distribution. Transport phenomena such as elec-
trolyte potential, electric current density, and fluid flow of electrolyte are computed. The presented algorithm
comprises computation of the exact VOF interface area as well as proposed modeling equations to accurately
handle transport phenomena within the deposit. Based on the modeling results, it is essential to minimize the
overshoot of electric current near the singularity between the cathode and insulator in the beginning stages of
electrodeposition to achieve a relatively uniform thickness of the deposit layer in electroforming process. The
results are validated against existing mathematical solutions.

1. Introduction

Electrodeposition is a popular technique to produce metals, alloys
and composite materials. The electrodeposition cell contains an elec-
trolyte and two electrodes, namely the anode and cathode. The elec-
trolyte as an ionic conductor is in the liquid state where the metal of
interest (e.g. copper, silver, gold, zinc, nickel, chromium, etc.) partici-
pates in faradaic reduction reaction. The metal ion converts to metal
atom at the cathode surface where a continuously growing metal de-
posit layer forms [1,2].

Electrodeposition is a multiphase and multiphysics problem invol-
ving the interplay of several transport phenomena such as heat transfer,
mass transfer, electric current density, ion concentrations, and the in-
teraction between flow and magnetic field known as magnetohy-
drodynamics (MHD) [3–5]. Most often, the thickness and shape (pro-
file) of the deposit metal are used as an indicator to evaluate the
performance of the process. Thus, it is of great importance to develop
transient models aiming at tracking the deposit front and computing
transport phenomena.

The distribution of electric current density is a decisive parameter in
the electrodeposition process [6]. Three classes are recognized, namely
primary, secondary, and tertiary current distribution [7–9]. Here, we
utilize the secondary current distribution in which the composition
variation in the electrolyte is ignored, whereas the electrode kinetics at
the deposit front is accounted for through the Butler–Volmer formula

[9].
Over the past decades, the finite element method (FEM) [10–12] or

finite difference method (FDM) [13–16] were extensively used to dis-
cretize governing partial differential equations (PDE) related to elec-
trodeposition phenomenon. Various methods such as phase field mod-
eling [17,18], Monte Carlo technique [19], boundary element method
(BEM) [12], level set method [12–14], and dynamic mesh [20,21]
technique were proposed. Phase field and Monte Carlo require ther-
modynamics data of free energy or entropy, and they can only work
well on a small scale (up to several micrometers) with the current
computational resources. BEM is not applicable for all ranges of non-
linear problems (e.g. in presence of flow) [22]. Dynamic mesh is re-
commended for problems involving unidirectional deformation of
boundaries. Level set requires a transition zone (diffuse interface)
around the interface to specify a smooth function. The transition zone
covers several computational cells spanning the exact location of the
interface. The shape of function must remain the same as the interface
so that re-initialization of the function is essential at each time step.

Here, we propose a novel transient approach using volume of fluid
(VOF) [23]. Unlike level set, the proposed VOF-based method does not
require a diffuse interface, as the thickness of the deposit–electrolyte
interface remains one computational cell. It is capable of simulating any
complex shape change of the deposit front regardless of the scale of
process. VOF as a well-known, powerful numerical technique in com-
putational fluid dynamics (CFD) tracks the volume fraction of each
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phase (i.e. deposit and electrolyte) throughout the domain. Further-
more, VOF enables us to fully resolve transport phenomena [23–26]. All
governing equations are discretized using the finite volume method
(FVM) that automatically conserves mass, momentum and energy [27].

The model is examined on two systems, namely unidirectional [28]
and multidirectional [10] deformation, which closely resembles the
process of electroforming [29] (see Fig. 1). Transient profile of deposit
front as well as transport phenomena are calculated considering sec-
ondary current distribution. The proposed VOF model can be used in a
cost effective way to enhance our knowledge on the transient behavior
of the electrodeposition process and to provide guidelines for the op-
timal design of electrodeposition cell and operation parameters.

2. Modeling

All symbols are listed in “Nomenclature”.

2.1. Proposed VOF-based method

We consider two immiscible and incompressible phases involving
the electrolyte as the surrounding fluid, and the deposit as the solid
phase. Hirt and Nichols [23] originally proposed the VOF method to
simulate gas–liquid and liquid–liquid multiphase systems. Thus, using
VOF for simulating the solid deposit requires additional assumptions
and considerations that will be further elucidated in “2.3. Transport
phenomena within the deposit”. The two phases are identified using a
spatial and temporal-dependent marker function (β),
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0,

d
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An advection equation for β is solved on a fixed Eulerian grid,

+ =
t

u m·( ) .
d (2)

The mass source term (m) determines the local growth of the
cathode surface,

=m a M
zFV

j n( . )VOF
(3)

Calculations of n and aVOF are discussed in “2.2. Computation of the
interface area”.

The mass transfer is only at the interface cells ( < <0 1), and the
interface shifts to the next neighboring computational cell after com-
pletion of deposition (β = 1).

Continuity and momentum equations determine the flow field,

=u m· 1 1
d e (4)

+ = + + +u
t

uu p µ u u g·( ) ·[ ( )]T
(5)

where = + (1 )d e and = +µ µ µ(1 )d e are weighted-
average of phases occupying each computational cell.

Laplace equation determines the electrolyte potential (φ) field,

=·( ) 0 (6)

where =j .

2.2. Computation of the interface area

n and aVOF are computed at each time step to accurately evaluate m
in Eq. (3) aiming at ensuring mass conservation using the following
proposed algorithm designed only for quadrilateral square shaped mesh

elements in the deposit region. =n n n( , )x y is given by: =n and

aVOF is bounded ( =a a[0, 2 ]VOF ). As shown in Fig. 2, three situations
are plausible. In situation (I), the absolute value of one of the compo-
nents of the unit normal vector is equal to one ( =n| | 1x or =n| | 1y )
where =a aVOF . In situation (II), the interface connects two perpendi-
cular sides of the cell so that β is the area of a triangle in 2D. Con-
trastingly, the interface connects two parallel sides of the cell in si-
tuation (III), whereby β is the area of a trapezoid in 2D. To distinguish
between situation (II) and situation (III), the limit volume fraction (βL)
is calculated:
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Eventually, aVOF for situations (II) and (III) is:

Nomenclature

a cell size, m
aVOF interface area, m
F Faraday constant, A s mol 1

g gravity constant, m s 2

j electric current density, A m 2

j0 exchange current density, A m 2

jBV current density of Butler–Volmer, A m 2

jave average current density, A m 2

K permeability
L characteristic length, m
m mass source, kg m s3 1

M molecular weight, g mol 1

n n n( , )x y unit normal vector
p pressure, Pa
R universal gas constant, J K mol1 1

Su momentum sink term, N m s3 1

S potential sink term, A m s3 1

t time, s
T temperature, K
u velocity vector, m s 1

u0 inlet velocity, m s 1

udf deposit front velocity, m s 1

V volume of computational cell, m3

Vd deposit volume in computational cell, m3

x vector coordinates, m
x y, coordinates, m
X Y, dimensionless coordinates
z number of exchanged electrons

charge transfer coefficient
volume fraction of deposit

L limit volume fraction of deposit
δ length scale, m

density, kg m 3

d deposit density, kg m 3

e electrolyte density, kg m 3

µ dynamic viscosity, kg s m1 1

µd deposit viscosity, kg s m1 1

µe electrolyte viscosity, kg s m1 1

electrolyte potential, V
int overpotential, V

electrical conductivity, S m 1

t time step size, s
()* a normalized parameter
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Fig. 1. Two cases are studied. Geometrical parameters related to computational
domains are given. Vector n indicates the normal direction to the deposit front:
(a) unidirectional electrodeposition; (b) multidirectional electrodeposition.

Fig. 2. All possible situations (I, II, and III) which are considered to compute the VOF interface area are illustrated. The red zone demonstrates the area filled by
deposit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The computational domain is divided into four group of cells that is
schematically shown: electrolyte (grey cells), interface (green cells), and de-
posit (white and yellow cells). Note that the mesh resolution is shown ex-
aggeratedly coarse for illustrative purposes. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Parameters used in our calculations.

Parameter

R [J K mol ]1 1 8.314546
T [K] 293

[kg m ]3 1000
µ [Pa s] 0.001
M [g mol ]1 63.55

F [A s mol ]1 96,485

[S m ]1 5.1

j [A m ]0
2 5

L [cm] 1
u [cm s ]0 1 0.001
z 2

0.5
I0 1

1 and 3.87
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A detailed derivation is provided in the supplemental materials as
“VOF-Interface-Area.pdf”.

2.3. Transport phenomena within the deposit

The computational domain is divided into four groups of cells
(Fig. 3) including the deposit (white and yellow cells), the interface
(green cells) and the electrolyte (grey cells). The velocity must become
zero within the deposit and at the interface, since the deposit front
(interface) only moves forward as a consequence of converting ions in
the electrolyte to atoms at the interface through Eq. (3). Increasing the
viscosity by a factor of ca. 100 times helps to significantly reduce the
velocity [30]. Additionally, a sink term is included in Eq. (5) to com-
pletely cease flow in white, yellow and green cells,

=S µ
K

uu (9)

Simulation trials revealed that any value of K in the range of 10−6 to
10−10 is suitable. Of note, using a very small value (e.g. 10−20) may
lead to numerical instability and lack of convergence.

Previously, we pointed out that the shape of deposit front could be
accurately captured with or without including calculations of field
structures inside the deposit region considering secondary current dis-
tribution [21]. Generally, the electrical conductivity of the deposit
(metal) is several orders of magnitudes larger than that of the electro-
lyte. Therefore, the electric field (gradient of potential) is minimal
within the deposit. Similar to Eq. (9), a sink term is applied in Eq. (6) in
yellow cells to suppress the potential,

=S
K (10)

The front of region involving yellow cells is located after a transi-
tional layer (two or three white cells) behind the deposit front to avoid
gradient jump over the interface.

Butler–Volmer (BV) kinetics considering secondary current dis-
tribution is given by,

=j j e e[ ]
zF

RTBV 0
(1 )zF

RT
int int

(11)

Of note, Eq. (11) has been superseded in the latest IUPAC

recommendations [31]. Herein, this equation form is retained for direct
comparison to the legacy electrodeposition literature. BV condition is
imposed at the interface (green cells) exploiting a variable spatial and
temporal-dependent electrical conductivity considering discrete gra-
dient estimation,

=x t
j

( , ) BV

int (12)

Eq. (12) is derived considering that jBV is equivalent to the flux of
charge at the interface. Considering the Green–Gauss cell-based gra-
dient theorem [27], the length scale (δ) is the sum of cell sides (4a).
Therefore, Eq. (6) in the entire domain together with Eq. (11) and Eq.
(12) in the green zone are executed in an iterative procedure at each
time step to update magnitudes of j , φ and x t( , ) aiming at achieving
the converged transient solution.

2.4. Other settings

All modeling equations are implemented in the commercial CFD
software, ANSYS FLUENT v.17.1, using user-defined functions (UDF).
Models were configured based on studies conducted by Subramanian
et al. [28], Alkire et al. [10], and Zamani et al. [12]. Accordingly,
potential field is solved in dimensionless form to compare our VOF-
based results with their results aiming at verification of our model.
Dimensionless parameters are: = = = =X Y I, , ,x

L
y
L

zF
RT

j LnF
RT0

0 . The
dimensionless forms of the equations are described in details in Refs.
[10,12,28].

The first computational domain, Fig. 1(a), corresponding to the
study of Subramanian et al. [28] namely unidirectional contains 10,000
structured equisized elements with the size of 0.1 mm. The second
computational domain, Fig. 1(b), corresponding to the study of Alkire
et al. [10], and Zamani et al. [12] namely multidirectional contains
45,000 quadrilateral square shaped mesh elements with the size of
0.06 mm in a rectangular zone (2L in the x-direction and 0.5L in the y-
direction) near cathode where deposition takes place. The mesh size is
gradually and incrementally increased away from the rectangular zone
toward the anode considering a successive ratio of 5%.

The temporal and spatial discretization schemes are first-order im-
plicit and third-order MUSCL [27,32]. The explicit scheme to discretize
β in Eq. (2) is Geo-Reconstruct [33].

The flux of potential is set to zero at insulators. The value of po-
tential is set zero at cathode. Electrodeposition can take place under
potentiostatic (constant potential) or galvanostatic (constant electric
current) condition [34]. Herein, the potential at anode is given con-
sidering potentiostatic mode: unidirectional ( = 1), and multi-
directional ( = 3.87). Extension of the model to galvanostatic mode is

Fig. 4. The abscissa and ordinate are dimensionless. (a) A comparison is made between our modeling results and results obtained by Subramanian and White [28] to
capture the evolution of deposit front; (b) The contour-plot of normalized electric current density ( j

jave
) on the deposit front.
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a topic for future work. The flow of electrolyte is only computed in the
multidirectional shape change, Fig. 1(b), where pressure-outlet (im-
position of a constant pressure) is assigned as boundary condition for
flow at outlet. The pressure gradient is zero at all other boundaries. The
velocity at inlet is assigned according to the laminar parabolic flow
between two parallel planes: =u L y(10 )u y

L
6

(10 )
0

2 . All parameters are

listed in Table 1. Of note, CFL number, u umax( , )t
a df , where

= ( )u j n.M
zFdf must be kept much smaller than one to ensure a con-

verged solution. The computation time on a single processor Intel Core
i7-4790 K CPU 4.00 GHz is ca. one hour.

Fig. 5. Snapshots at different times of the field structures in the region near cathode are shown: (First row) volume fraction of deposit (β), (second row) the
magnitude and streamlines of normalized electric current density (j*), (Third row) contour of normalized potential and normalized equipotential surfaces (φ*),
(Fourth row) the magnitude and streamlines of normalized velocity (u*). The arrow indicates time-advancement.
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3. Results and discussion

3.1. Unidirectional shape change

For the system shown in Fig. 1(a), semi-analytical solutions were
previously presented by Subramanian and White [28]. The electrolyte
velocity field is not computed; hence u is set zero in Eq. (2), and Eqs.
(4), (5) are not solved. The electric current density flows from anode
toward the cathode. As time proceeds, the deposit thickness increases
and consequently the total electrical resistance of the system decreases.
A higher amount of electrical current is permitted to flow through the
system at constant applied voltage as the deposit front advances. As
shown in Fig. 4(a), a good agreement is observed between our modeling
results with analytical results considering the transient thickness of
deposit layer. The variation in the magnitude of electric current density
along the deposit front is an important factor to characterize the per-
formance of the process. Conventionally, the ratio of electric current
density to the average electric current density ( j

jave
) along the deposit

front is utilized as shown in Fig. 4(b) using contour-plot. As the deposit
front moves forward, the ratio increases which implies that the non-
uniformity of the thickness of the deposit layer amplifies. All transient
results are provided in supplemental materials as “Unidirectional.avi”.

3.2. Multidirectional shape change

Here, the system represents the well-known electroforming process
for copper with overgrowing of the insulator in the vicinity of the
electrode [29]. The highly non-uniform electric current density dis-
tribution adjacent the sharp corner of electrode-insulating substrate is
transferred to a remarkable non-uniform deposition layer. Demonstra-
tively, snapshots at different times of the field structures are shown in
Fig. 5. As anticipated, the maximum amount of electric current density
is near the singularity. As time proceeds, the area of deposit front in-
creases and consequently the electric current density at the deposit
front decreases. The trajectory of electric current density is illustrated
using streamlines of electric current. The flux of potential is specified
through BV equation at the very deposit-electrolyte interface where the
electric current density is perpendicular to the deposit front. However,
a noteworthy amount of the electric current density flows tangential to
deposit front so that the streamlines do not appear perpendicular to the
interface. The equipotential surfaces are perpendicular to the stream-
lines of electric current density at each point inside the electrolyte.
They perpetually re-locate as the deposit front moves forward. The inlet
velocity is given to ensure the flow is laminar which is associated with
Reynolds number equal to one (Re = 1). The impact of concentration
fields of ions which is driven by flow on the electric field is ignored in
the calculation of secondary current distribution. Therefore, variations

in the flow field has no influence on the shape of deposit front. How-
ever, the growth of deposit layer shifts the position of the hydro-
dynamic boundary layer near the wall as shown in Fig. 5. Results are
illustrated in supplemental materials as “Multidirectional.avi”, and
“Cathode-growth.avi”. Evaluation of the overall mass and charge con-
servation is provided as “Conserve-mass.pdf”.

The computed profile of the deposit front is compared to results
obtained by previous studies [10,12] as shown in Fig. 6(a). A very good
agreement is observed. Fig. 6(b) illustrates the contour-plot of ( j

jave
)

along the deposit front. As deposit front moves forward, the ratio de-
creases that is in favor of producing a uniform deposition layer. In other
words, the amplitude of non-uniformity in the distribution of electric
current density along the deposit front diminishes as the thickness of
deposition layer grows. This implies that it is essential to minimize the
overshoot in the amount of electric current density at the singularity in
the initial stages of the growing deposit to obtain a uniform deposit
layer.

4. Summary

We propose a novel approach using the volume of fluid method
(VOF) to simulate transient shape change of the deposit front during
electrodeposition. The model is examined on two-dimensional systems
for which mathematical solutions are available. Field structures such as
electrolyte potential, electric current density, and flow of electrolyte are
computed considering secondary current distribution. The VOF inter-
face in each computational cell moves at each time step as a con-
sequence of mass transfer during electrodeposition. A novel algorithm
is suggested to compute the exact area of VOF interface. Proper mod-
eling equations are suggested to accurately handle transport phe-
nomena within the deposit. The method is then utilized to model
electroforming of copper in the presence of edge effects at the singu-
larity between the cathode and insulator. As the deposit front moves
forward, the impact of the edge effects on the thickness of the deposit
layer becomes weaker. As such, the overshoot of electric current density
at the singularity in initial stages must be minimized to obtain a uni-
form deposition layer and consequently to improve the performance of
the process. All transient results are shown through animations in
supplemental materials.
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