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Abstract

The final macrosegregation pattern in steel ingot castings is strongly influenced by the position
of the last point to solidify, which in general is identical to the area of maximally enriched melt.
The position of this point is very often determined by the development of the melt surface and
the formation of shrinkage cavities during solidification.

The formation of deep shrinkage cavities of alloys with long solidification range is difficult to
be modeled if the solid phases are assumed to be stationary. The present work introduces a
model that splits the solid phases into a stationary and a mobile part without mtroducing new
momentum equations for the mobile solid. The mobile solid is rather thermodynamically
treated as solid, but hydrodynamically treated as liquid and thus included into the liquid mo-

mentum equations.

A 2D-CVM-model based on volume-averaging is used to predict the transient shape of the sur-
face and the shrinkage cavity as well as their influence on the final solute distribution. The sol-
ute transport mechanisms are thermosolutal convection, diffusion in the liquid and feeding
flow. Mushy zone flow is described by an isotropic permeability model. The moving surface 1s
realized by implementing a volume-of-fluid (VOF) model modified for use with variable densi-
ties and solidification of the free surface. Phase transitions are calculated using a piecewise lin-
ear eutectic or peritectic phase diagram that considers one liquid and two solid phases.
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Introduction

The task to predict the influence of a surface shrinkage cavity on the final macrosegregation
pattern is extremely complex. Figure 1 shows some of the physical effects occuring during the
solidification process of a steel casting with riser and which have been modeled 1n this work.
The effect causing most of the trouble is shrinkage. While it is relatively easy to implement
shrinkage terms inside the liquid, it becomes really difficult if the whole cast part including the
moving free surface is described.

So far in macrosegregation simulations various methods have been used to treat the free sur-
face. Sometimes the domain size is kept constant and a continuous fluid inlet 1s used [1,2]. Oth-
ers keep the surface flat and decrease the size of the first surface cell row or move the surface
by an average velocity [3]. There is huge number of works treating various aspects of the prob-
lem, like the formation of shrinkage cavities or the formation of macrosegregations by different
flow phenomena. The present work tries to integrate as many aspects of the problem as possible
and describes the formation of macrosegregations due to thermosolutal and shrinkage flow and
how they are influenced by the development of the shrinkage cavity.
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The present work introduces a number of new models:

Figure 1: Physical etfects
that occur during the solidi-
fication process of a steel
casting with riser and that
have been implemented in
the present model.

Modified VOF-model to describe the solidification of moving free surfaces with partial so-
lidification of surface cells.
Split Solid Model to describe the transport of equiaxed solid and to prevent premature
solidification of the moving free surface
Solidification algorithm to describe eutectic and peritectic solidification of binary alloys in
systems with strong convective solute transport.
Shrinkage porosity model that copes with areas cut off by freezing.

Together with differential equations for temperature, concentration in the liquid, pressure and
velocities the models have been integrated to form a framework with complex interactions. In
the present stage of development little effort has been put on the use of complicated physical
models. The philosophy of the project was more to create a modular framework of simple mod-
els which in the future can be replaced by more sophisticated models without jeopardising the
complex interactions.

Mathematical Model

One central idea of the model is the introduction of mobile solid fractions without introducing
additional solid momentum equations. This is achieved by treating the mobile solid fraction
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thermodynamically as solid, but hydrodynamically as liquid with solid density. This model will
be called Split Solid Model (SSM).

Basic concept

The model considers eight “phases™:

liquid: q=1 stationary solid y - phase: g = y dead
mobile solid o - phase: g = 0 move porosities: q = pore
mobile solid y - phase: q =y move obstacles: q = obst
stationary solid 0 - phase: g = 0 dead void: q = void

For each of these “phases” the following physical quantities have to be determined: x- and y-
velocity u,, v, , temperature T,, pressure p,, concentration of solute C,, and the volume fraction

&, This results in a total of 48 variables. This high number can be reduced by a number of as-
sumptions. Thermal equilibrium between all phases and pressure equilibrium between all mo-
bile phases and the porosities yields

T::Tq p:=pl =p5move=pymove=ppore pé’dead =pydead =pobst =0 (1)
For the velocity equations the assumptions of the SSM yield
V= i;é' move — :‘7;/ move i;l vé' dead — i—;y dead — i./'ﬂhjzzvare = ‘_;obst = i-}Lvoid =0 (2)

Mobile and stationary part of the same solid phase are assumed to be in solutal equilibrium:

Cé' $= Cé' move C5 dead C}/ == C}f move C}/dead C o Cobst =C =0 (3 )

pore void

The 48 variables have been reduced to 15: u, v, T, p, C;, C,, Cs, and the eight phase fraction

variables &,. In the next sections the 15 equations are presented that are used to solve this prob-
lem. The quantities are volume-averaged following the model by [4]. To simplify the represen-
tation the following definitions are used:

€ oveldead *— Z & where move = I, move, ymove  dead = ddead, ydead, obst (4)
g=move / dead
peﬂmove/dead = Z(gq pq )/gmove/dead cPejfmove/dead 8 pqch / Z qpq (5)
g=move/ dead g=move/ dead =move / dead
- Zeq /leﬂ’ / (6)
g#void q#vozd q:tvozd
1. Continuity equation:

0 = o

Z F‘? = _5—; (8move P eff move T 8dead P eff dead )+ A [8move P eff move V] =0 (7)
q

2. + 3. Momentum vector equation:
The equation has been developed using the assumption of a common constant effective viscos-

ity w4 for all mobile phases. The complete equation 1s:

D E ove VD

( k
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P gmove p eff move + i"’? [
6 ! |4 move p eff move
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n Z |:8q [pq n apq (Cq _ Cq o )}:|g_ . gmoveﬂeﬂ (g5dead :_gycf:ad__ (8)

g=I[,0 move, Kog

¥y move

Consequence of the SSM is the presence of the mobile solid phases 1n all terms that are usually
a function of liquid fraction only.

move

4. Energy equation:
The energy equation was developed from a mixed enthalpy equation considering enthalpies as

linear functions of temperature, 4, = h,, +cp, (T ~ L ) The complete equation 1s:

o\e yo C m F & dead P ¢ d V vl —¢ A .V
P dead dead ™ Peff d
I_( move I eff move™ P eff move ead I ¢ff dea ol aea ) J + : (8 HIOVe Peﬁ movec P eff move mat’ “eff )

ot
* ﬁ(gqpq) * X =
= Z Aq 7 + Z[Aqv '(gqqu)]+ Z(quextemal q) (9)
q#l g=0 move q

y move

- Where A’;r = (h0 ;= Cpi1, 0,)—— (ho . —Cp. L )= const. and Severnal 4 are external heat sources for

Og
phase ¢g. Consequences of the SSM are the presence of the mobile solid phase fractions 1n the
convective term and the new term on the right side of the equation that describes the transfer of
latent heat by convection of mobile solid.

5.+ 6. + 7. Concentration conservation equations
The model uses the lever-rule, i.e. it assumes complete solutal equilibrium inside each phase

and uses equilibrium phase diagrams. This leads to solid concentration equations
C, =x;C, C, =«,C, (10)

The liquid concentration equation was developed from a volume-averaged mixture concentra-
tion equation:

5 ~ ) _ B o
-a‘-(gzpzcz )+V- (£,07C, )=V (glplDIVC’)

—tn

T Z {_'—' (gqmove +5qdead) qC ]_V.(gqmovepqch )+6'(queadpq5qdeadch)} (11)

Main consequence of the SSM is the convective term on the right side of the equation that ac-
counts for the solute transport by mobile solid. There is no diffusive term for the mobile solid
phases because they are assumed not to be in contact.

There are still eight equations necessary to be able to determine the eight phase fractions.

8. + 9. Sum over all phases and constant obstacle phase
Of course the sum over all phases must be 1:

&= 1= Esmove — Eymove — E8dead — Eydead — Eobst — Epore ~ Evoid (12)

and the fraction of obstacle phase is constant and results from the initial conditions:

Eobst = CONSL. (13)

10. VOF equation for solidifying free surfaces
The well known VOF equation with partial cell treatment, [5], has been extended to the case of

solidification (time dependent obstacles) and time dependent liquid densities. These modifica-
tions allow to use the equation to describe complex interactions of shrinkage flow and the so-
lidification of moving free surfaces.
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?, _ _ 0 |
_a_; (gopen p eff open r, move )+ Ve (gopen P eff open v! r, move ) = T pove é_t_ (gclosed P eff closed ) (14)
where F =  move (15)
&

open

11. Shrinkage Porosity Model

The fraction of porosities 1s determined by the fact that the pressure drop that drives liquid
through the mushy zone 1s limited by a minimal pressure that 1s defined by the point where nu-

cleating gas pores become stable. As a first very simple model vapour pressure of the alloy 1s
assumed to be this minimal pressure.

Pmin = pvapour (1 6)

12.+13. Solidification model

For reasons of simplicity two additional phase fractions are defined. As mobile and stationary
solid are thermodynamically treated as one single phase

85 = 85 move 3 g5dead &, =¢& T 8ydead (17)

y * “ymove

To determine the all over solid fractions a concept 1s used that has been described in [6]. One of
the two equations 1s obtained from the phase diagram:

T(ci)=T (18)

— = liquidus

Unfortunately this equation does not contain any of the phase fractions in demand, whereas the
temperature and liquid concentration equations do:

T=Tle;,e,) Cl=Cile;e,) (19)

But as they are already used to calculate the temperature and liquid concentration respectively,
they give no additional information about the phase fractions. The missing equation 1s obtained

from the conditions arising from the current solidification type. Four different types are consid-
ered:

e primary o-solidification : Only liquid and 6 —solid 1s present — &,=0 (20)
e primary y-solidification : Only liquid and y—solid 1s present — &5=0 (21)
o Solid state transformation o/ y . No liquid 1s present — &=1-—65 (22)

e cutectic / peritectic solidfication . Liquid, 0 —solid and y —solid 1s present, The missing
equation arises from the condition, that the solidification 1s linked to the eutectic / peritectic

plateau. — T (5 . ,gj,)z T (23)

eut | peri

14.+15. Split Solid Model
The last two equations determine how the solid that forms is split into the mobile and stationary

part. The SSM has been developed to prevent small amounts of stationary solid forming close
to the free surface in early stages of solidification from blocking the further surface movement

and the formation of a deep shrinkage cavity. For small all over solid fractions (¢5+¢,) all solid
1s mobile, for high solid fractions all solid is stationary. For solid fractions of &y a0 £ Y2 A&y da
(cf. figure 2) the fraction of mobile solid varies smoothly from all mobile to all stationary. o -
and - solid are both split up into mobile part and stationary part in the same way.

Split solid equations. These rules lead to the following set of equations:
Espy = SSF(£5 + £, ) & s (24)

E,move = SSF(85 +8, ) £, (25)
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The Split Solid Function (SSF) can be chosen in different ways. So far three function types
have been tested, figure 2. For the present calculations the sinus type function was used.

Lol < . ; o Figure 2: a) Com-
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Columnar growth model. Close to mold walls or areas with high solid fraction solidification in
many cases is not equiaxed but columnar. To describe this phenomenon a columnar growth
model has been developed. So far this model switches off the split solid model if 1nside a radius

R.... there is either a solid wall or solid fractions above a limit &.onmnar.

Numerical model

The numerical 2D CVM model uses a mixed explicit / implicit discretisation and the SIMPLER
algorithm described in [7]. A sophisticated solidification algorithm has been developed that is
suitable for the simulation of processes with strong convective solute transport and thus strong
horizontal movements inside the binary phase diagram. The software has been parallelised us-
ing the shared memory standard OpenMP.

Numerical Set-up

A test calculation has been made to validate the model and to show the effect of the SSM. The
simulation was compared to experimental results published in [8]. The cast part 1s a block of
unalloyed steel GS60 with riser, cast in a sand mold with isolation at two ends, figure 3 a). The
isolation is meant to create quasi 2D solidification conditions. Figure 3 b) shows the boundary
conditions and initial configuration used for the calculation. Initial temperature was 1890 K.
The simulation assumes a binary Fe0.42wt%C alloy. No porosity model was applied in this
simulation. Table I shows the physical data of the FeC alloy system and some calculation pa-
rameters. Concentration dependent liquidus and solidus temperatures and segregation coeffi-
cients are taken on-line from the binary FeC equilibrium phase diagram.

air (riser top)

Boundary Conditions (BC) Figul‘e 3: a) Geome-
try of cast part. The

free surface
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Table I: Physical data of FeC alloy system and calculation parameters.

[kg / (m-s)]

densities o(T)= 8547 | heat conductivities =27
[kg/m’] ~0.835- T |[W/(mK)] As = 30
05 = 8344 permeability const. Ky=8-107"°
heat capacities  |c,;="790 latent heat /y/ 15 [kI/kg] | Aws/ 1= 275
[J/(kg-K)] cps =706 Parameters of SSM & mdd = 0.3
| | Cpy = 675 ) - : Aé‘mv dd ~— 0.2
dynamic viscosity | = 6-10" Reotumnar=0.01m |

Ecolumnar = O 6

Results and Discussion

Figure 4 shows the simulation results and compares them to experimental results from [8], left
half of figure 4 c). The right half always shows the calculated shape of the shrinkage cavity and
the segregation pattern (deviation of carbon concentration from initial concentration) after a)
600 s, b) 1400 s) and c) 4620 s (cast part completely solidified). Both the shape of the shrinkage
cavity and the final macrosegregations show promising accordances as well as large discrepan-
cies. The depth of the cavity is comparable as well as the position of the last point to solidify.

The discrepancies can be explained by different arguments:
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P: igure 4: Simulation of steel ingot. Right: Carbon concentration deviation from initial concentra-
tion; Left: a) b) Solid fraction, velocities. ¢) Experimental carbon concentration deviation [8].
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e The current model assumes constant solid density ;. The choice of this density determines
the amount and speed of shrinkage and by that the size and shape of the shrinkage cavity.

* The cooling has been realised by applying MAGMAsoft cooling curves as boundary condi-
tions. The MAGMAsoft calculation did not consider fluid flow and convective heat transfer.

e A parameter study has to be done to investigate the influence of the parameters of the SSM
and the columnar growth model on the shape of the shrinkage cavity.

° An anisotropic permeability model instead of the isotropic one used so far will have great
influence on the final macrosegregation pattern.

The left half of figure 4 a) and b) shows the total fraction of solid and the velocity field. Figure
4 a) can help to understand the importance of the SSM. The area where significant fluid move-
ment occurs, has solid fractions < 0.2 %. In this area all solid is mobile and the higher solid
density leads to sedimentation. The solid fraction increases from about 0.0025 close to the sur-
face up to about 0.1 at the bottom. In figure 4 b) the mobile solid fraction close to the surface
reaches about 0.015. In a calculation without SSM these small amounts of solid would be sta-
tionary and would be sufficient to confuse the free surface algorithm. With SSM the mobile
solid can just follow the surface movement. Observation of the transient velocity field showed
that no stable convection cells occur. The flow is highly complex and transient and driven by
the strong interaction between thermal and solutal convection, shrinkage flow and sedimenta-
tion of mobile solid.

Conclusions and Outlook

A 2D CVM model to simulate the formation of shrinkage cavities in steel castings and their in-
fluence on the final macrosegregation pattern has been presented. The realisation as a computer
program was guided by the concept that the submodels are exchangeable and can be replaced
by more sophisticated models without jeopardizing the functionality of the complex framework.
The first simulation results are promising and show many accordances with the experimental
results. To explain or eliminate the dicrepancies extensive parameter studies and calculations
with higher spatial resolution are planned.
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