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ABSTRACT

Technical Sn- bronzes tend to form both macrosegregations and microsegrega-
tions during DC-casting due to the particular thermodynamic properties and kinetics of
phase transformation. As a result a heterogencous cast microstructure forms that is some-
times a reason for a decrease in workability. The extent of macrosegregations in DC-
casting can effectively be influenced by casting parameters like casting velocity, primary
cooling or inlet geometry which in fact change the relative flow between the melt and the
forming solid. In order to understand the influence and interaction of the related phenom-
ena, simulation methods are applied. The solidification of the strand as well as the forma-
tion of macrosegregation are simulated with a two phase volume averaging model. The
velocity field of the melt flow is explicitly calculated by solving the corresponding mo-
mentum conservation equations. Within the mushy zone the local formation of microseg-
regations in the presence of feeding flow is estimated. The thermodynamics of the Cu-Sn
System is accounted for and it is distinguished explicitly between interface and average
concentrations. To investigate the influence of feeding flow on the formation of mac-
rosegregations, a study has been performed. Based on this result, the phenomena of mac-
fosegregations are described in a detailed discussion.
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Tin content in the outer parts of the ingot ure significantly higher than in the centre,
However, the so called inverse macrosegregation at the outer surface layer of the casting
rols does not qualitatively depend on d.

In general segregations degrade mechanical propertics. Using Figure 1 and 3, it
can be estimated that the macrosegregation between the surface and the centre of the in-
gol lead to differences in the tensile strength Ry, of at least 20 MPa, Furthermore by the
enrichment of Tin towards the surface interdendritic precipilation of the 8-phase particles
arc pronounced. This uncven distribution of strength, hardness and brittleness of the 5-
phasc precipitations impedes the subsequent plastic deformation processes. Hence, unde-
sirable scgregations have to be removed. One possibility is to homogenize. The effect of
hamogenization heat treatment is characterised by the relaxation time v = 4* / D(T). For
oxample: At annealing temperature 7 = 850 °C the diffusion cocfficient of Sn in Cu is
given by D=3.9 10 em¥s [29], Correspondingly r= 1000 s for levelling microsegrega-
tion (4 = 20 pm) and v > 30 years for homogenisation macrosegregation in ingots
(4 > 20 mm) are necessary, This example shows that the diffusion in the solid ingot is too
slow to remove macrosegregation. During solidification it has to be avoided by choosing
appropriate custing parameters. Thereforc numerical caleulations provide not only the
possibility to check the influence of casting paramcters on the macrosegregation distribu-
tion before doing experimental work but also provide the possibility to study the physics
behind the process especially in important like the mushy zone, where measurement re-
sults are very difficult or not to obtain. The experiments then are used to cvaluate the
accuracy of the numerical model,

NUMERICAL MODELING

Since a detailed description of the applied model is published in [22] the reader is
referred to this paper. The main assumptions of the model can be summed up as follows:

*  The thermodynamic for the binary CuSn6 system is approximated by using a
constant redistribution cocfficient, &, and a constant liquidus slope, m. The
solid fraction at the peritectic temperature reaches about 95-98 vol.%. Therc-
fore, becausc the model for the peritectic rcaction is still under development,
it is assumed that the remaining liquid solidifies over a small temperature in-
tervul. The influence of I'hosphor is ignored up to now.

¢ Nucleation and growth of equiaxed grains are ignored.

o Columnar dendrites arc thought to start growing at the mold wall as soon as
the temperature drops below the liquidus temperature.

*  Growing cylinders are used to approximatc the columnar dendrites.

¢ A shell-like growth driven by dilfusion around the cylinder is assumed.

¢ Corresponding source terms 1o account for feeding flow and thermo-solutal
buoyancy driven flow are included.

*  Mcchanical interaction between the mush and the flow is calculated vig
Darey’s law. To model the mush permeability the Blake-Kozeny permeabil-
ity approach [17, 30] is applicd.
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e In order to study the macrosegregation quantitatively, & mixture concentea-
tion, Eup, i defined according to
G o fiteopeSe )
potitete
Here e is the (averaged) liquid concentration, o the (averaged) colummnar conceniration,
fi the volune fraction of liquid, fe the volume fraction of columnar dendrites, g the lig-
uid density and g the solid density.

Definition of the Benchmark

The present study on the formation of macrosegrogation is based on a caleulation
which takes into account feeding fow and forced conveetion. For the process simulation
a casting velocity of (#ear = 1.92 mm/s and a casting lemperature of Tp = 1389 K are
applicd. Since the mold is of eylindrical shape, an axis symmetrical simulation has been
chosen, Figure 4a shows a schematic picture of the mold where (®) indicates the position
of the nozzle, (@) shows the surface on the top, (@) shows the upper part of the mold
which is assumed 1o be insulating, (@) shows the lower part of the graphite mold which
is surrounded by a copper-steel mold including a water cooling system (®). Figure 4b
gives an pverview over the boundary conditions used. Here (@) gives the position of the
inlet, where a pressure inlet is tuken. A heat transfer coelficient (TC) of h =50 WinwK
and a nozzle tempemture of Ty = 1292 K are considered for the submerged entry nozzle
(SEN) region. For (@) the HTC and the temperature have a value of ir = 50 W/n’K and
Tourfuce ™ 325 K. For (@) almost ideal insulation is assumed with h= 10 WinK and
ooy = 1292 K. For (®) h= 3000 W/m?K and T =550 K and for (®) h= 1000
WK and e = 300 K. The constant volocily trean = 1.92 /s is taken for the outlet
(®). For the nozzle and for the free surface a slip condition is used. The mold wall is |
assumed to move with the casting velocity. “Therefore, & slip condition for the liguid
phase and a non-slip condition for the columnar phase are applied. The grid has a size of
9016 cells. For initial conditions, the simulation is started with hot melt (Timg, = 1292 K)
at rest (e = 0 nV8), The presented resulis are taken after reaching a sleady siate. The
conservation cquations are numerically solved by using the control-volume based finite
difference CFD software FLUENT, version 6.2 [31]. Additional sourcc lerms are calous
lated vin UDF (user dofined functions).

Figurc 4a - Sketch of the consider i

‘ h of ¢ ¢d DC casting process: @ nozzle; @

graphitc mold with isolation; @ graphite and copper mold; ® stcee’l m::‘je‘:}:;fﬂcm @
cooling i water

0.95+d

2.9*d

2.3%d

pr L o 5 .

Numerleal Results Figure 4b - Grid and interfaces for boundary conditions (delails given in the t

; . . . c toxt
The studied continuous casting process of & CuSné alloy starts with the melt |:lr;; )
heated to the casting lemperature of To = 1389 K. The hot melt enters the mold thro is comploted at the end v

one nozzle in the centre of the casting. Due to the fact that the upper part of the mold is represents the pcritcc:ic f:::ﬁzﬁfﬂie °£ 1{ i =1072 K (@), Figure 5). This temperature
thought to be insulating, cooling starts where the hot melt reaches the water cooled zone, extending from Tiiquyg to T, ﬁ of the binary CuSh system. The columnar mushy
graphite mold, Figure 5 shows the calculated steady state temperature ficld. Solidification iqui ®, shows a volume fraction of columnar (rom 0 to 0.97

Based on the fact that th i i
gophilc ol Figurs S shows e mcly t T 1289 K (©). Figu 5) 0 o ool or the oot echions 1 il ndr doslopman, 1 ssmed ot T
H S evelopment, it is assumed that the

Temaining liquld solidilies over a small temperature interval at Ty Ieedmg flow and
forced co. ion lead to ccial flow pattern namcly in a way that besides a b
nvecet: d a sp fl p N

g

F
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strong vortex at the inlet (I, Figure 5), a sccond higher velocity field appears in the
mushy zone, right in the middle of the casting (11, Figure 5). Feeding flow is always di.
rected from the dendrite tip towards its roots and thus carries segregated mell into the
mush. Since the early work of Flemings in 1967 [23, 24, 25], this phenomenon is known
to produce positive macrosegregation at the surface of a casting, the s_o-cnllm.i inverse
segregation. Figure 6 shows a schematically picture of growing dendrites where three
different zonies are considered: the liquid in front of the solidifying region, followed by

1.2000+03
| 1.3520403
1.215€:03
1 1.278e%03
1.72419403
1.204€403
1.167a403
1.1302+03
1.083¢¢0
1.0580+03
1,0200403
0.828w+02
0,4500402
0.0874+02
B.7176+02
B.348¢+02
7.0780+02
7.0080402
7.2308+02
0.8700402
8.6006402

Figure 5 - Temperature field of the casting (in K). O Tiyig=1289 K; @ T5=1072 K, I:
strong inlet jet; iz high velocity ficld in the casting cenire

the mushy zone with liquid and solid developing to a totally solidified zonc. After Flem-
ings [23, 24, 25] the concentration profile has negative ¢y values in the mush whereas in
the solidified casting no macrosegregation appears (black line, Figure 6). This cxpecta-
tion is based on a situation where the isotherms of Tiguig and Tioius in a solidifying qasl-
ing move parallel to each other due to the considered constant temperature gradient-
Equ. 2 shows Flemmings “Lacal Solute Redistribution Equation™ (LSRE).
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solid

liquid

Figure 6 — Expected one dimen
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Figure 7-- Mac ion: positi
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ones in the centre of the casting S
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@

stribution coofficient, v an independent melt velocity, v the v
G the temperature gradient and 7° the cooling rate. Jt‘ll;c te =
stant and thercfore the two isotherms arg not pnmliul the u.r:n:m-
change. In the case of an incrensing temperatare 'g-,rmiil"ew;ui ll‘::I :
ascs and a negative macrosegr gation forms (dasllcd-domdllinc':
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Figure 6). In the casc of a decreasing temperature gradient, the mushy zone width in-
creases and a positive macrosegregation forms (dashed line, Figure 6).

These results from Flemings LSRE equation (Equation 2) can be understood os 0315
explained in the following: The melt enters a volume clement with a concentration ~-iom
and leaves the volume element with a concentration ¢, During solidification, the melt
becomes enriched in solute (microsegregation) and therefore ¢ is expeeted 1o be lurger
than ¢ (dilution). This in fact would lead to a negative macrosegregation in this volume
clement, However, due to solidification the volume flow of the liquid entering the vol-
ume element is larger than the volume flow of the liquid leaving the volume clement (en-
richment). This may lead to accumulntion of solute. For low solid fraction the dilution is
dominant compared to the enrichment (decreasing ¢, for large solid fraction it is the
reverse (increasing Cunis)-

0.375m

0.405 m

Figure 7 shows on the left hand side a contour plot of the caleulated magrosegre-

gation pattern. The gray color shows no macrosegregation whereas the white and nlmost yim) J
mtl:‘n::i:la;)(:;:;E\:?:l:;m;;s;‘:fgn‘;?:s? s()u:?hl;“:;ll:fI?nﬁcdks?d“f:cg:r:lll!;:ﬂ:;;t‘;{ bl";igure g" left: Development of macrosegregations (white: positive; ]
profiles are presented which were taken al 0.15, 020, 0.25 and 0.30 m depth of the cast- ctween 0 and 0.97% volume fraction solid phasc in the cen.n?c olfllvhc’ l.)lac'k: negative),
ing. The ast concentration profile is taken before the isotherm of Tiiguia reaches the centro tical macrosegregation profile in the centre of the c'n;i;ﬂgs"n& RESREE

of the easting. The horizontal slashed lines in the profiles show the position of the origi-

nal alloy concentration (6 wi.% Sn). The specific negative mixture concentration profile

in the mushy zone is developed (similar as the curves shown in Figure 6). The high posi- B
live macrosegregation ot the mold wall forms because of the inverse segregation. Addi- Coix
tionally, n plateau of positive segregated solid forms attached to the inverse segregation.
This positive macroscgregation is induced by the increasing mushy zone width in this
area due (o a decreasing temperature gradient.

0315 m (£2=0)

Figure 8 gives # more detailed view on the macrosegregation pattern between
S = 0 (volume fraction solid in the centre of the casting) and £i© = 0,97 at a depth of 0.58
0.315, 0.330, 0.345, 0.360, 0.375, 0,390 and 0.405 m. On the right hand side, in addition,
a vertical profile along the centre of the casting is shown, Where Figure 9 shows all the
profiles overlaid in a plot of ¢u versus distance x form the centre of the billet. When
reaching Tiigua (A7 = 0) in the centre of the casting the two developed minima (left side 0.56
and right side) in the mushy zone touch cach other and in the following the negative val- :
ues of macrosegregation in the centre increase, in our case, 10 a depth of 0.375 m (Figure
8 and 9).

0375 m (%= 0.8)

0.405m (£2=0.97)

Looking at the profiles between 0.375 m and 0.405 m it cun be seen that of, 8 in- 3

creasing again to s smaller value below ¢ The reason for this is the fact that the centre :
of the casting is fod by almost fresh, less segregated melt until ¢f, reaches & minimum at x

0.375 m. Following the description of Figurc 6, the zone below this depth is fed by al- Black d
ready segregated melt and herefore ef, increases again till the depth of 0.405 m where Y 3‘;; . Z:fldcli:t;'.; show the o profiles indicated by the gray arrows at 0.3 1
405 m depth, gray lines show the ¢y profiles between 0.3 fs uf ;::;1

the fully solid zone is reached. Hsng ‘
-375 m depth, black lines show the e,
‘wiv profiles between 0.375 m and 0,405
X L405 m depih

Fi - M
gure 9 = Development of ¢y, over the casting length and the casting radius x

I-.
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k g L RESULTS
COMPARISON OF EXPERIMENT AL AND NUMERICA

asured (Figure 10) with a caleulated (F?guyc 11) 8n-
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First, in th Mpsimulmion result. Second, in the experiment .n lcs‘.lpﬂ7 s
e is observed. These two effeets are not reflec m] g
It..t)c :EB;:::T’::??I;; could be thut nucleation undhyi.c'f‘lln::nl?;:::: ;:l ls‘:l?t%ﬁca'.ion o
» i ason could be the ) o
i5 lakTD;.ll‘ t;a:ongsl;lrg;ﬁoﬁmlrf}rg vol.% and that the effcet of Phosphor is not in
at : 7 :
f:tlfll:tcd. These features will be addressed in futare work
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CONCLUSIONS

The presented paper shows that macrosegregations in tin-bronzes lead to & de-
crease in the workability of the continuous casting product, Since macrosegregations can
only be influenced cconomically by a special treatment during the casting Process, sinitt-
Intion work is meaningful in order to predict the localisation and strength of macrosegre-
gations based on the process conditions, The first steps towards these predictions are
done by studying the different physical phenomena occurring during solidification. It is
shown that the macrosegregalion pattern in the solidified strand sirongly depends on the
i ion of flow | and mushy zone development. Roughly speaking, positive
macrosegregations appear in areas where the mushy zone is i ing due 1o a d
ing temperatwre gradient, while negative macrosegregations appear in arcas where the
mushy zone is decreasing in thickness. The simulation work qualitatively reproduces the
experimental macroscgregation profiles,

Further studies ave plancd to investigate the influence of the casling conditions,

like casting temperature, casting velocity and geometry, especiully for the inlet nozzle.
These studics will include the impaet of the cquiaxed phase and the small, but maybe not
negleciable, Phosphor-content by n ternary thermodynamic model,
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