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3D Lattice Boltzmann flow simulations through dendritic mushy zones
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a b s t r a c t

Literature data on permeability of dendritic microstructures show a wide scatter. For a given solid
fraction the permeability may vary easily by two orders of magnitude. This might be caused by some
unavoidable technical problems in doing the corresponding experiments. However, even numerical
results may vary greatly depending on the source of the input microstructure and/or the dimension of
flow simulation (2D vs. 3D) and/or the applied boundary conditions. In the present work we have used
the Lattice Boltzmann technique to perform flow simulations through 2D and 3D dendritic micro-
structures coming from (i) simplified geometrical approximations, (ii) phase field simulations of binary
alloys and (iii) computer tomographs on AlCu alloys. The discussion of the results shows that for low
solid fraction, simple geometries can be used as substitute for dendritic structures. However, once the
secondary arms are more prominent, large deviations and scattering occur. These deviations are caused
by the strong variation of the dendrites geometry along the growth direction, making simplified
structures insufficient to derive a reasonable value for the permeability.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The vast majority of metallic alloys solidify by forming a
dendritic mushy zone. Depending on the local solid fraction such
a dendritic mushy zone acts like a more or less permeable media
for any melt flow which may occur during solidification. Since the
alloy elements are differently segregated in the interdendritic
melt, flow through these areas often lead to the occurrence of
macrosegregation, a phenomenon which tremendously deterio-
rate the quality of large castings or of continuously cast strands or
billets. In order to find ways to reduce such macrosegregation,
corresponding numerical solidification models need to have reli-
able permeability data for the dendritic mushy zone.

In 1974, Apelian et al. showed for two aluminum alloys that
porous media theory might be valid for describing the flow
through a dendritic network [1]. When distilled water was forced
through dendritic structures fromwhich liquid had been removed,
it was found that Darcy's law [2] was followed. When inertial

effects are negligible, Darcy's law is written as

gℓ v
!¼ � K

μℓ
∇p; ð1Þ

where v! is the velocity of the interdendritic liquid, μℓ is its
dynamic viscosity, gℓ is the volume fraction of interdendritic
liquid, K is the second-rank permeability tensor and p is the
pressure. The product gℓ v

! is also called superficial velocity. The
main difference between an equiaxed and a columnar dendritic
array is that the permeability of an equiaxed dendritic structure is
almost isotropic, whereas for a columnar dendritic structure it
depends on whether the flow is parallel or normal to the primary
dendrite arms. Thus, for equiaxed dendrites K is effectively scalar
(i.e., K ¼ KI ), whereas in columnar systems, K is treated as
diagonal with two unique values: Kzz parallel to the principal
growth direction and Kxx ¼ Kyy for flow transverse to the den-
drites. Therefore research on permeability in mushy zones can
naturally be divided between investigations of equiaxed and
columnar structures. An extended overview on experimental
investigations on permeabilities of dendritic structures can be
found in [1,3–16].

In order to discuss the observed permeability difference
between grain-refined and nongrain-refined specimens, the spe-
cific surface area, SV≔Aℓ=V0, with Aℓ being the surface area of
liquid–solid interface, and V0 the corresponding two-phase
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volume, was introduced as additional parameter. In the following
works the reciprocal of the specific surface area S�1

V was recog-
nized as a relevant length scale for permeability [5,7,8,10,12,17,18].
Although S�1

V is a natural length-scale, it is difficult to directly
measure during practical solidification, this is why researchers
estimated it from the length of the primary or the secondary
dendrite arm spacing λ1 [3].

For high liquid fractions (i.e. gℓ40.65), it was found difficult to
obtain experimental data for permeability because the dendrites do
not remain coherent during testing [7,12,17]. Consequently, research-
ers have used numerical simulations of the interdendritic flow to
estimate mushy zone permeability for high liquid fractions
[5,8,11,13,14,18–20]. Heinrich et al. did a synthesis of empirical and
numerical data for the columnar case [21]. They found that in
opposite for an equiaxed dendritic microstructure, the permeability
correlations for columnar dendritic structures reveal three distinct
regions for the flow in both transverse and parallel direction to the
dendrite axis. The corresponding data fits are shown in Fig. 1.
Heinrich and Poirier describe the occurrence of these three regions
by using empirical data for low liquid fractions and results from
numerical simulations for higher liquid fractions [21]. For the
intermediate region (0.65ogℓo0.75) a simple interpolation
between the endpoints of the two data sets was used. The fact that
the low-gℓ (predominantly experimental) and high-gℓ numerical
simulations do not merge is not understood. Ganesan et al. [5] and
Heinrich and Poirier [21] state that the underlying flow morphology
changes from one resembling flow through parallel or transverse
cylinders, to one resembling flow through constricting tubes. This
change must be continuous, and so it does not explain the step
change between permeability at low and high gℓ. Possible origin of
the discrepancy could lie in the use of a badly estimated λ1 (vice S�1

V )
as the length-scale for dimensionalized K, or in the orientation of
channel structures in high gℓ giving rise to a non-diagonal K in the
coordinate system used (i.e., perpendicular and parallel to the
direction of primary-arm growth).

Beside the best fits on numerical and experimental perme-
ability data published in [21], Fig. 1 shows also the analytical
solutions from [22,23] as well as the widely used Black-Kozeny
equation adapted for dendritic structure [3,24]. Sangani et al. and
Drummond et al. analyzed the drag forces for Stokes flow through
two-dimensional (2D) periodic square, rectangular, triangular and
hexagonal arrays of circular cylinders parallel and perpendicular to

the cylinder axes. Obviously, these analytical solutions superpose
for low solid fractions with permeability curves suggested by
[21,24]. However, the widely used Blake-Kozeny permeability
equations [3] is far off the other curves.

According to the studies mentioned above, it appears that
macroscopic modeling could definitely be improved by explicitly
considering the liquid fraction gradients in the macroscopic
momentum equation and by taking into account the microstruc-
ture (tortuosity) of the mushy zone. The dendritic columnar region
is characterized by a strong anisotropy [3,25,26] and by the non-
uniform macroscopic properties such as the liquid volume frac-
tion, which continuously changes from unity in the melt to zero in
the solid region. Although these continuous variations can
obviously lead to important differences in the convective flows
[27], they have rarely been explicitly taken into account in the
theoretical models.

In the present paper, we have performed Lattice Boltzmann
flow simulations through dendritic mushy zone whereby the
2D and 3D dendritic microstructures used as input came from
three different sources, (i) predefined 2D artificial morphologies,
(ii) phase field dendrites, and (iii) computer-tomographs taken
from an Al–Cu alloy with about 35 vol.% numerically removed
interdendritic eutectic. In the following, the numerical procedure
is described. Then, results on flow simulations through the three
different input microstructures are presented and discussed.
Finally, conclusions were drawn.

2. Numerical procedure

To investigate the interdendritic fluid flow passing through the
dendritic structure, the open source library Palabos was utilized
[28], which provides a modular Cþþ written code based on the
Lattice Boltzmann (LB) method [29–33]. This method is advanta-
geous for solving fluid flow problems in complex shaped struc-
tures containing irregular boundaries within reasonable
calculation time. Generally, Lattice Boltzmann (LB) methods can
be regarded as discretized modifications of the Boltzmann equa-
tion. By simulating streaming and collision processes across a
limited number of fictive particles, the intrinsic particle interac-
tions show viscous flow behavior applicable across the greater
mass. With collision models such as the widely used one of
Bhatnagar–Gross–Krook [34], the solution of the discretized
Boltzmann equation is known to produce similar results than the
classical Navier–Stokes-equation. In order to describe the propa-
gation and collision of the fictitious particles in a computer
algorithm, the collision and the streaming step are defined as
follows:

Collision step f ið x!; tþΔtÞ ¼ f ið x!; tÞþ1
τ
ðf eqi ð x!; tÞ� f ð x!; tÞÞþΔt UFi;

ð2Þ

Streaming step f ið x!þ c!iΔt; tþΔtÞ ¼ f ið x!; tþΔtÞ; ð3Þ
with f ið x!; tÞ being the distribution function of the particle
populations along the directions i at the spatial position x! and
time t. c!i is the microscopic velocity vector, Δt the discrete time
step and Fi the body force component. τ stands for the dimension-
less relaxation time of the fluid. The number of possible propaga-
tion directions i in the rectangular lattice depends on the chosen
LB model. For the simulations presented here, a three-dimensional
model (D3) considering 19 directions (Q19) was applied. There-
fore, i¼0, 1, 2, …, 18 in this D3Q19 model. The equilibrium
distribution function of the populations is given by

f eqi ð x!; tÞ ¼wiρ 1þ3 c!i U u!þ9
2
ð c!i U u!Þ2�3

2
u!U u!

�
;

�
ð4Þ

Fig. 1. Normalized permeability of dendritic mushy zones as function of solid
volume fraction taken from different literature sources. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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where the weighting factors in this collision operator, wi, depend
on the chosen LB model. According to [29], we have used w0 ¼ 1=3,
w1�6 ¼ 1=18 and w7�18 ¼ 1=36 for the D3Q19 model. The macro-
scopic fluid density, ρ, and the macroscopic fluid velocity, u!, are
given by

ρ¼ ∑
18

i ¼ 0
f i and ρ u!¼ ∑

18

i ¼ 0
f i c
!

i: ð5Þ

Note that this single relaxation LB method considers a dimen-
sionless system. In order to converge to the full Navier–Stokes
equation with dimensions, we consider the mass and momentum
conservation equations in the physical system indexed with p:

∇pup ¼ 0; ð6Þ

∂up

∂tp
þup∇pup ¼ � 1

ρp
∇pppþνp∇p

2up: ð7Þ

Here, ρp is the physical density and νp the physical viscosity. With
the reference length, lref ;p, and the reference time, tref ;p, and by
used for the following dimensionless quantities indexed with d

td ¼
tp

tref ;p
; ld ¼

lp
lref ;p

; ud ¼
tref ;p
lref ;p

up and pd ¼
t2ref ;p
ρpl

2
ref ;p

pp: ð8Þ

Eqs. (6) and (7) are made dimensionless. Hence, we obtain the
dimensionless version of Eq. (7):

∂ud

∂td
þud∇dud ¼ �∇dpdþ

1
Re

∇d
2ud: ð9Þ

where the Reynolds Number, Re, is defined as

Re¼ l2ref ;p
νptref ;p

: ð10Þ

Comparing Eqs. (7) and (9) shows that the following conditions
holds

νd ¼
1
Re

and ρd ¼ 1: ð11Þ

On the other hand, as stated in [35] the Lattice Boltzmann
method converges towards the Navier–Stokes equation only if the
dimensionless viscosity is related to the dimensionless relaxation

time by the following expression:

τ¼ νd
c2s

þ1
2
: ð12Þ

Here c2s ¼1/3 is the speed of sound in the lattice system [35].
The choice of time step has a strong influence on the stability

and accuracy of the method. For the Reynolds numbers considered
in the present analysis (Reo1), to obtain the solution with low
level of error it is suggested [36] to choose a time step so that
0.5oτoo1.5. The optimum was found to be around 0.9. For
other values the solutions converges towards wrong solutions, or
do not converge at all. In the present analysis τ is taken equal
to 0.9.

To calculate the Reynolds Number we have used the physical
length of the input microstructure as reference length, lref,,p.
Alternatively, we could have chosen the corresponding primary
arm spacing. The reference time, tref ;p, was taken from the relation
tref ;p ¼ lref ;p=uref ;p, whereby the reference velocity was obtained
with the equation for dynamic pressure:

uref ;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
∇ppp
ρp

s
: ð13Þ

To consider the pressure gradients in the LB simulations, a
constant body force acting on each of the liquid lattice elements
was introduced. A non-slip boundary condition is imposed at the
solid/liquid interfaces by implementing a bounce-back rule that
reverses the momentum of particles approaching the solid wall
[30]. Periodic boundary conditions are maintained at the inlets
and outlets of the domain.

3. Input microstructures

3.1. Artificial microstructure

For the starting point of our investigation we have used
predefined 2D bcc arrays of artificial solid objects as input
microstructures for the LB flow simulations. Examples are shown
in Fig. 2. The flow through these arrays was initiated by applying a
pressure gradient of 10�3 Pa/mm in x-direction. Periodic boundary
conditions in both directions were applied, as well as the halfway
bounce back rule for the solid/liquid interface. The simulation
domains were discretized with 201�201 lattice cells, which
turned out to be sufficient to obtain cell size independent results.
Different solid fractions were obtained by increasing the size of the
objects. Obviously, the flow channels between the objects decrease
with increase object size, which finally leads to complete blocking
at a certain structure-dependent object size. The permeability of
the predefined artificial microstructure was evaluated based on
Darcy´s law as given in Eq. (1).

3.2. Phase field dendrites

In order to get a more realistic input microstructure, phase field
(PF) calculations of dendritic solidification were performed. The
simulated dendrite shown in Fig. 3 was obtained using the
quantitative phase field model by Karma [37] for dilute binary
alloys. The parameters were set to correspond to the isothermal
solidification of Fe–C at temperature T¼1780 K, with partition
coefficient k¼0.18 and initial melt concentration c0¼0.0097.
Although the flow may generally interact with the formation of
the dendritic morphology we have neglected any interaction of the
flow with the growing dendritic morphology and considered the
dendrite as given solid obstacle to the flow. As for the predefined
artificial microstructures, we have initiated the flow by applying a
constant pressure gradient of 10�3 Pa/mm perpendicular to the

Fig. 2. Areas of circles, cubes, crosses and curves bounded crosses representing
different solid fractions. The orientation of the coordinate system as well as the
direction of the applied pressure gradient is also shown.
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dendrite axis. Periodic boundary conditions were applied for all
the walls except at the bottom and the top of the domain where a
non-slip condition was used. The calculation domain shown in
Fig. 3 had a height of 200 mm and a width of 100 mm � 100 mm.
For the LB calculation it was discretized into 256�128�128
lattice cells.

The velocity field was calculated in 3D for the entire domain.
Based on this velocity field the permeability perpendicular to the
dendritic structure was estimated. We have analyzed the flow for
each plane perpendicular to the dendrite axis considering only
flow components within the corresponding plane. Due to the
presence of non-slipping walls the corresponding permeability
values were calculated with the help of the Darcy–Brinkman
equation:

∇p¼ �μl
K
v!sþμl∇2 v!s; ð14Þ

where v!s ¼ gl v
!is the superficial velocity.

The flow parallel to the dendrite axis was also considered. For
this case, the dendrite was separated into ten parts of uniform
length. To allow the use of periodic boundary conditions every
part was mirrored to generate a symmetric shape. In this case the
permeability is extracted by using the Darcy law, Eq. (1).

3.3. Computed-tomography of an AlCu alloy

A typical dendritic microstructure as input for a LB flow
simulations was captured with computed tomography (CT). Since
this analysis method needs sufficient density differences to resolve
different phases, a binary Al–18 wt%Cu alloy was investigated. This
alloy consists of two main phases; the primary aluminum den-
drites and the interdendritic eutectic. While the Al-dendrites are
impoverished in Cu, the eutectic is enriched in Cu. This causes

different densities which can be used in the CT to distinguish both
phases. The eutectic areas were detected and numerically removed
to allow the presence of void regions. The regions are believed to
have been liquid at a certain stage of the solidification.

To prepare the data sample for the LB simulations, the intensity
values captured with CT and representing the dendritic phase
were set to 0, while those values which represent the eutectic
phase were set to 1. Thus, a three-dimensional array containing
values of 0 and 1 was written to a simple n.txt-file which was then
used with the Cþþ library Palabos.

The applied periodic boundary condition in flow direction
enables the flow which leaves the simulation domain through a
certain boundary face “1” to enter the domain again at the
opposite boundary face “2”. Hence, the developing flow pattern
is uninfluenced by non-linear effects which may occur if conven-
tional inlet boundary conditions are used. However, applying the
periodic condition requires pairs of boundary faces having solid
and liquid lattice cells at the same position. To ensure this, the
simulation domain was mirrored in the main flow direction. For all
other outer boundaries, a no-slip condition was applied. Therefore
this represents a channel of square cross-section filled with
dendrites similar to configurations of experimental permeability
investigations [38]. The array finally used for the simulations had
an entire size of 400�200�200 voxels which corresponds to
dimensions of 960�480�480 mm. More details about the CT
reconstruction process can be found in [39].

As before, a pressure gradient of 10�3 Pa/mm was applied
along the main flow direction. This comparatively low pressure
gradient was chosen to achieve laminar flow through the struc-
ture. Based on the calculated flow field, the permeability of the
structure was evaluated based on Darcy's law, Eq. (1).

4. Results and discussion

4.1. Artificial microstructure

Permeability data obtained from LB flow simulations through
the predefined artificial microstructures are shown in Fig. 4. Our
results fit well with the analytical solutions published in [22, 23]
for solid fractions close to zero. The precise shape of the obstacles
and their arrangement (triangular or bcc arrays) is not of sig-
nificant importance. This changes if the size of the obstacles

Fig. 3. Example of a dendrite obtained by phase field calculations. The vertical
walls of the box represent the non-flux boundaries used for Phase Field calculation.
The colored plan gives an example of the velocity-norm within this plan. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 4. Permeability of the artificial microstructures compared to different results
from literature. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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increases. Generally, we predict a deviation from the analytical
solutions for increasing solid volume fractions. As stated in [22, 23]
the analytical solutions are strictly valid only for very small solid
volume fractions. In our case, squares and circles give similar
permeability values whereas cruciforms and round-shaped cruci-
forms result in a higher flow resistance and thus in a lower
permeability. It can be noticed that the predefined artificial
microstructures only allow flow through up to a certain solid
volume fraction, which can correspond to the maximum volume
fraction packing limit, each curves end at the corresponding limit.
In Fig. 4, the influence of the geometrical shape on the calculated
permeability is clearly visible, since at gs�0.5 the difference in
permeability reaches about one order of magnitude.

4.2. Phase field dendrites

The simulated dendrite was obtained using the quantitative
phase field model by Karma [37] for dilute binary alloys. The
parameters were set to correspond to the isothermal solidification
of Fe–C at temperature T¼1780 K, with partition coefficient
k¼0.18 and initial melt concentration c0¼0.0097. The evaluation
of the flow field around the phase field dendrite shown in Fig. 3
leads to the permeability data shown in Fig. 5. For very low solid
volume fraction (that's for the dendrite tip region) the results are
similar to the analytical expression from [22, 23] both for flow
normal and parallel to the dendrite axis. However, deviations
occur when side arms start to form. For the phase field dendrites
evaluated in this work, this happens at gs�0.25. Above this limit
we found a great spread of permeability data especially for gs
between 0.25 and 0.65 especially for flow normal to the axis. In
this region the secondary arms of the dendrite are dominant, and
due to their inhomogeneous geometries large changes of the
permeability are predicted even for almost constant solid volume
fraction gs. In addition to this effect, the solid volume fraction also
varies strongly along the dendrite axis. For example, in the first 25
planes taken from lower part of the phase field dendrite the solid
fraction gs ranges from 0.86 to 0.39, which is shown in Fig. 6.

Note that the exact permeability data depend strongly on the
position and on the shape of the side arm formation. In some cases
also tertiary side arms may occur, which will influence the local

flow resistance, and thus the permeability. The permeability jump
reported in [21] can also be found in our results, namely right at
the position where the secondary arms start to grow. The wide
spread of permeability values at almost the same solid volume
fraction shows a strong correlation between the dendritic geome-
try and the resulting permeability. Structures with the same solid
volume fraction (Fig. 6) generate a resistance to the flow that can
vary by two order of magnitude.

For a solid volume fraction larger than around 0.6, the perme-
ability values estimated from the flow normal to the dendrite
steam become unique. This might due to the fact that for the
present dendrite, such high solid volume fractions occur only once.
However, the possibility of forming generally different flow
patterns at high solid volume fraction is limited compared to
possibility which exist at lower solid fraction. This might be a hind
of the nature of the permeability data spread found in literature. It
is interesting to notice that for the largest solid fractions, the
calculated permeabilities are in good agreement with the predic-
tion of the anisotropic Black-Kozeny law.

For parallel flow the results are similar to the one provided by
Drummond's analytical approximation, but only until the forma-
tion of side arms. With developed side arms the flow resistance
increases and therefore the permeability decreased compared to
the cylinders considered by Drummond [23].

4.3. Computed tomography of an AlCu alloy

Streamlines of the flow passing through the eutectic structure
are shown in Fig. 7. With only one structure being investigated so
far, results could not be plotted as a function of solid volume
fraction yet. The average primary arm spacing was estimated to
be �220 μm, and the solid fraction of the sample is gs¼0.64.
The permeability computed from the result of the flow field
through the interdendritic spacing was found to be equal to
K¼2.8 �10�12 m2. This result is reported in Fig. 5, its value for

Fig. 5. Permeability values estimated by LB flow simulations normal and parallel to
a phase field dendrite shown in Fig. 3 compared with the literature data. The black
arrow points to the single result obtained for the LB flow simulation through the
AlCu tomogram. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

Fig. 6. Cross sections perpendicular to the axis of the phase field dendrite (Fig. 3)
with different solid fractions.
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the corresponding solid fraction is in excellent agreement with the
previous results obtained by using the phase field dendrite.

5. Numerical accuracy

All previous results were calculated for the dendrite shown in Fig. 3
with τ¼0.9 and reported after having reached a residual of variable
change smaller than 10�7. Good agreement was found with theore-
tical and Finite Volume results for f so0.25 (Fig. 5). In order to show
the sensitivity of the calculated permeability on the relaxation
coefficient τ, calculations were performed for τ¼0.3, 1.5, 2.5, and 5.
Since the grid size is fixed, changing τ means changing the time step.
As predicted in [36] no convergence was achieved for τ¼0.3 and 5.

For τ¼1.5 and 2.5 the results did converge but towards
different solutions from the one obtained with τ¼0.9 (see Fig. 8)
Permeabilities are about 50% higher for τ¼1.5, and 100% higher for
τ¼2.5. However, higher level of scattering is also found for τ¼2.5,
which is a sign that a limit in computation stability is approached.
Special care must be given to the free parameters of the Lattice-
Boltzmann simulation if accuracy is targeted.

6. Conclusions

Reliable permeability data of semi-solid dendritic networks are
essential for predicting macrosegregation in castings. The three
methods of getting an input microstructure for flow simulations
showed that analytical/numerical approximations for predefined
artificial microstructures may give good data for low solid volume
fraction. However, for microstructures which are mainly governed
by the presence of any type of side arms, permeability data varies
even for similar solid volume fractions. This seems to be an
intrinsic fact which represents the possibility of having different
flow resistances at the same solid volume fraction or of having the
some flow resistance at different solid volume fractions, both
caused by a different local morphology. At large solid volume
fraction, the morphology resembles a volume of packed spheres, in
which the liquid flows through multiples channels. Thus the
diversity of morphology disappears, leading to a single value for
the permeability.
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