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Abstract: Large eddy simulation (LES) of transient magnetohydrodynamic (MHD) turbulent flow
under a single-ruler electromagnetic brake (EMBr) in a laboratory-scale, continuous-casting mold
is presented. The influence of different electrically-conductive boundary conditions on the MHD
flow and electromagnetic field was studied, considering two different wall boundary conditions:
insulating and conducting. Both the transient and time-averaged horizontal velocities predicted by
the LES model agree well with the measurements of the ultrasound Doppler velocimetry (UDV)
probes. Q-criterion was used to visualize the characteristics of the three-dimensional turbulent
eddy structure in the mold. The turbulent flow can be suppressed by both configurations of the
experiment’s wall (electrically-insulated and conducting walls). The shedding of small-scale vortices
due to the Kelvin–Helmholtz instability from the shear at the jet boundary was observed. For the
electrically-insulated walls, the flow was more unstable and changed with low-frequency oscillations.
However, the time interval of the changeover was flexible. For the electrically-conducting walls, the
low-frequency oscillations of the jets were well suppressed; a stable double-roll flow pattern was
generated. Electrically-conducting walls can dramatically increase the induced current density and
electromagnetic force; hence they contribute to stabilizing the MHD turbulent flow.

Keywords: continuous-casting mold; electromagnetic brake; turbulent flow; electrically-
conducting walls

1. Introduction

Continuous casting (CC) has become one of the most important production processes in the steel
industry. The molten steel from the ladle flows through the tundish into a mold and then freezes
against the water-cooled copper mold, forming a solidified shell. High casting speed has been widely
used to reduce the production cost and to enhance the productivity. Therefore, the molten steel flows
in the mold with intense turbulence, especially along the hot jets that escape from the submerged entry
nozzle (SEN) ports. The hot jets are very likely to cause a “breakout” accident near the impingement
points on the narrow walls [1]. In addition, the turbulent flow of molten steel plays a key role in the
slab quality, since it influences the growth of a solid shell, causes slag entrapment, the floatation of
bubbles and non-metallic inclusions [2–6].
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Electromagnetic braking (EMBr) is considered an effective flow control technology to maintain a
stable “double-roll” flow pattern in the CC mold. Several commercial configurations of EMBr have been
successfully used in slab casting, such as local EMBr [7–9], single-ruler EMBr [10–14], and double-ruler
EMBr [15–19]. The flow of the electrically-conductive molten steel in the magnetic fields generates an
electromagnetic force opposing the motion, and thus should be self-stabilizing. Experimental studies
using low-melting-point metallic melts on the magnetohydrodynamic (MHD) flow have been reported
by some researchers [8,10,19–21]. Harada et al. [8] investigated the effect of different types of EMBrs
on the fluid flow using the mercury model. A plug-like flow in the liquid pool can be developed
by the level magnetic field, but not by the local magnetic field. Zhang et al. [19] studied the flow
pattern of mercury in a flow control mold (FC-mold) under various magnetic distributions and flux
densities. Optimum conditions of the upper and lower magnetic flux densities were present based on
the free surface fluctuation and the flow recirculation profiles. Considering the risks of mercury, the
ternary alloy GaInSn was used by the Helmholtz Zentrum Dresden-Rossendorf (HZDR) to investigate
the impact of a level magnetic field on the discharging jet [11,20,21]. Some advanced measurement
technology, such as ultrasound Doppler velocimetry (UDV) and contactless inductive flow tomography
(CIFT), were used to reconstruct the flow structure of the liquid metal under the influence of one
or multiple magnetic fields. However, the interaction between the diverse magnetic fields and the
turbulent flow appears to be a rather complex phenomenon, so that it deserves further investigation.

Computational fluid dynamics (CFD) allows a deeper inside view into the MHD flow in the
mold. Extensive numerical simulations have been carried out considering various magnetic field
configurations and flow parameters [9,12–18,22–25]. Miao et al. [22] reconstructed the peculiar
phenomenon of the excitation of non-steady, non-isotropic, large-scale flow perturbations caused by the
application of an external direct current (DC) magnetic field using a Reynolds-averaged Navier–Stokes
(RANS)-SST turbulence model. Li et al. [23] studied the influence of the vertical electromagnetic brake
(V-EMBr) on the steel/slag interface behavior using the k-ε turbulence model; the immersion depth and
the port angle are not as sensitive as those in the other type of EMBrs. Some transient studies based on
large eddy simulation (LES), by Thomas et al. [12,13,15,24], reveal deeper insights into the fundamental
nature of the turbulent flow and electromagnetic effects, such as the stability of the jet, surface-level
fluctuations, flow profiles, and argon bubble transport. Liu et al. [16] investigated the transient fluid
flow and inclusion transport under various EMBr arrangements and flux densities. A significant
effect on the removal rate of inclusions was found, especially for larger ones. Vakhrushev et al. [25]
compared the capability of the commercial software ANSYS Fluent and the open-source CFD package
OpenFOAM on the modeling of the MHD flow.

In the CC mold, the molten steel freezes against the water-cooled copper mold, forming a
solid shell. The whole area can be divided into three parts: the liquid pool, mushy zone, and the
solid shell. The electrical conductivity of the solidified shell is higher than that of the molten steel.
An electrically-conducting wall is an essential parameter affecting the turbulent flow in the presence
of an external magnetic field [11,20,21,26–28]. Recently, Timmel et al. [11,20,21] studied the effect of
the electrically-conducting wall on the turbulent flow using two brass plates attached to the inner
walls to emulate the solidified shell in the real process. The existence of a conducting wall can stabilize
the flow by suppressing the unsteady low-frequency oscillation of the jets. The effect on stability has
been confirmed with some numerical simulations [13,22]. However, few researchers study the details
of electromagnetic field distribution (current density and Lorentz force) in both the liquid pool and
solidified shell. Such an investigation is important to attain deeper insight into the fundamental nature
of the MHD flow and to optimize the design of EMBr devices.

The current work presents a mathematical model for investigating the transient MHD turbulent flow
under a single-ruler EMBr in a laboratory scale CC mold. The influence of different electrically-conductive
boundary conditions on the turbulence flow and electromagnetic fields is considered. The numerical
results are validated with measurements made in the mini-LIMMCAST facility at HZDR [11].
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2. Mini-LIMMCAST Experiments

The mini-LIMMCAST facility is a small-scale CC mold employed at HZDR for investigating
liquid metal flow and related transport processes. The eutectic alloy Ga68In20Sn12 was chosen as the
operating fluid at room temperature. A detailed description and schematic view of the experimental
facility can be found in the previous work by Timmel et al. [11]. Table 1 shows the physical properties
and operating conditions in the experiment. The rectangular mold was made of plexiglass. The melt
was supplied from a tundish to the mold through a plexiglass tube as SEN and flowed through a
U-bend channel into a catchment tank. Then an electromagnetic pump conveyed the melt from the
tank back into the tundish. During this process, the liquid levels of both tundish and mold were
monitored using a laser distance sensor. A DC magnetic field with a maximum field strength of
B = 310 mT was installed perpendicular to the flow direction near the SEN ports along the wide wall of
the mold. The distribution of the measured magnetic field [12,14] along the vertical casting direction is
shown in Figure 1, and was considered in the current study. To simulate the solidified shell in the real
mold, the inner walls of the wide mold faces were covered with thin brass plates with a thickness of
0.5 mm. The melt velocity along the midsection of the narrow face of the mold was measured by an
ultrasound Doppler velocimeter (UDV) using a maximum of ten sensors. The first sensor was placed
at z = 0.24 m on the mid-plane of the narrow wall, and the subsequent sensors were placed at 10 mm
intervals below the first one.

Table 1. Physical properties and operation conditions.

Parameter Value

Mold width/thickness 140 mm/35 mm
Mold length 330 mm
Nozzle diameter 10 mm
Nozzle port angle 0◦

Nozzle port height/width 18 mm/8 mm
Submergence depth of nozzle 72 mm
Casting speed 1.35 m/min
Velocity at nozzle inlet 1.4 m/s
Dynamic viscosity of GaInSn 0.00216 kg/m·s
Density of GaInSn 6360 kg/m3

Electrical conductivity of GaInSn 3.2 × 106 1/Ω·m
Magnetic permeability of GaInSn 1.257 × 10−6 H/m
Wall thickness at wide face (brass) 0.5 mm
Electrical conductivity of brass 15 × 106 1/Ω·m
Maximum magnetic field strength 310 mT
Reynolds number, Re 41,222
Hartmann number, Ha 417
Stuart number, N 5
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3. Computational Model

The primary objective of this work was to study the effect of different electrically-conductive
boundary conditions on the transient MHD phenomena and electromagnetic field. The numerical
simulation was performed using the commercial solver FLUENT 14.5. The electrical potential method
was used to solve the MHD equations. It is valid for low magnetic Reynolds numbers, which are
mostly valid for the CC process. The turbulent flow in the SEN and mold is modeled by the LES model.

3.1. Fluid Flow Field

The continuous and Navier–Stokes equations were solved:

∇·u = 0 (1)

ρ
∂u
∂t

+ ρ(u·∇)u = −∇p +∇·
[
(µ + µt)

(
∇u +∇uT

)]
+ FL (2)

where ρ, u and p are the density, velocity vector, and pressure. µ is the dynamic viscosity of the fluid.
The superscript “−” represents filtered. The external magnetic field affects the fluid flow through the
electromagnetic force FL. The turbulent viscosity µt was calculated based on the Smagorinsky sub-grid
scale model [29]:

µt = ρ(Cs∆)2
√

2‖S‖2 (3)

where Cs = 0.1 is the Smagorinsky constant. ∆ = V1/3
cell is the filter width. S is the rate-of-strain tensor

given by S = 1
2
(
∇u−∇uT).

3.2. Electromagnetic Field

Lorenz’s law was used to calculate the electromagnetic force FL:

FL = J× B (4)

The symbol B(0, B0, 0) denotes the applied external magnetic field. J is the induced current
density, which was calculated by the electrical potential approach as follows:

J = σ(E + u× B) (5)

where E is the electric field, which can be written in the form of E = −∇ϕ. Based on the charge
conservation condition, ∇·J = 0, was used to obtain the equation for the electric potential ϕ.

∇2 ϕ = ∇·(u× B) (6)

3.3. Numerical Details

The geometry, material properties, and boundary conditions (Figure 2) were set according to
the mini-LIMMCAST facility at HZDR [11]. Both the liquid metal and the conductive side walls
(0.5 mm brass plates) at the wide faces of the mold were included. The whole domain was divided
into 3.94 million cells. The grid along the mold walls was refined to catch the better resolution of the
electromagnetic field inside the brass plates and the Hartmann layers. The velocity and turbulence
parameters at the inlet were obtained based on the casting speed. A free-slip boundary condition
with zero potential gradients was applied on the top surface of the meniscus. Along the walls of
the SEN and mold, the no-slip boundary condition was employed. At the outlet of the domain, a
fully-developed flow was assumed, where the static pressure was set to zero.
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The boundary condition for the electric potential along the walls is given by

∂ϕ

∂n
= (u× B)boundary·n (7)

where n is the unit vector normal to the boundary. For an insulated boundary, ∂ϕ/∂n = 0, no electric
current can penetrate into the wall. For a conducting boundary, where the electric current can
penetrate into the wall, a specified potential is assigned at the boundary. The current density can then
be calculated from Equation (6).

In the real CC process, because of the existence of the solidified slag film between the slab and
copper mold, no electrical current flows inside the copper mold. Considering the fact that the electrical
conductivity of the solidified shell is higher than that of the molten steel, the electrical conductivity
and thickness of the solidified shell were taken into account to assess the magnetic field effect on the
turbulent flow in the liquid pool of the mold. In the current work, the cases of electrically-insulated
walls and conducting walls were compared. The wall conductance ratio was defined as:

Cw = 2
σwδw

σL
(8)

where σw and δw denote the electrical conductivity and the thickness of the electrically-conducting
wall, respectively. L is the characteristic length, which takes the thickness of the mold.

For the GaInSn physical model, the wall conductance ratio for brass was 0.134, which is almost the
same value for a real steel caster with a mold thickness of 90 mm assuming a thickness of the solidified
shell of 5 mm [14]. For the cases of electrically-insulated walls, the wall conductance ratio was zero.

The computational cost for the unsteady MHD turbulence flow is normally orders of magnitudes
higher than that for steady state calculations in terms of memory and CPU time. Therefore, the
unsteady calculation of the LES was started based on a steady state initial flow fields of the k-ε model.
The transient MHD flow was calculated for 30 s and the data were monitored for every time step.
Statistical data were collected and averaged over the entire time.

4. Results and Discussion

4.1. Comparison between Simulations and Measurements

The transient horizontal velocity history calculated by the LES model was compared with the
measurements of the UDV probes [11,14] at point 1 (Figure 2: x = −0.041 m, y = 0 m, z = 0.2 m) in the
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jet region, as shown in Figure 3. The minus sign of the velocity represents the negative direction of x.
The differences in fluctuation frequency and amplitude between them were caused by the different
sampling rates. For the LES model, the monitoring data was collected at every time step (0.001 s),
so a higher frequency and amplitude were obtained than those of the measurements, which had a
frequency of 5 Hz for these measuring sensors [30]. In order to compare closely with the measurements,
a 0.2 s time average was performed on the calculated signal. The two methodologies agree very well
with each other for the low-frequency time-averaged signals. In other words, the transient fluctuation
behavior of the MHD flow in the mold was well-captured by the LES model.Metals 2018, 8, x FOR PEER REVIEW  7 of 15 
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Figure 3. Transient horizontal velocity history at point 1 in the mold.

The UDV measurements of horizontal velocity on three horizontal lines, 90, 100 and 110 mm
from the top surface (Figure 2), for the case with electrically-conducting walls in the GaInSn physical
model [11] and the LES predictions are compared in Figure 4. For the current case, the model
predictions with conducting walls agree with the measurements, except an overestimation of the
maximum velocity close to the SEN on line 1. Timmel et al. [11] have reported that the UDV
measurements might be inaccurate near the SEN and the narrow walls, because of the low vertical
spatial resolution and the interaction between the ultrasonic transducer beam and solid walls. Thus,
the time-averaged behavior of the MHD flow in the mold was also well-captured by the LES model.
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4.2. Instantaneous Flow Characteristics

In order to visualize the characteristic three-dimensional eddy structure, snapshots of the
instantaneous (t = 20 s) distributions of the iso-surfaces of the Q-criterion [31] are shown in Figure 5.
The Q-criterion was calculated using the following relation:

Q =
1
2

(
Ω2 − S2

)
(9)

where S is the rate-of-strain tensor, and Ω is the vorticity tensor.Metals 2018, 8, x FOR PEER REVIEW  8 of 15 
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All the simulations were calculated using the same mesh and the same time step. The value of
the Q-criterion was 500 1/s2. Apparently, the large-scale eddy structure occupied almost the entire
mold for the case without EMBr, as shown in Figure 5a. This implies that the turbulent flow in the
mold was strong. However, the highly turbulent nature of flow might lead to the risk of an uneven
solidified shell (even breakout), the entrainment of mold slag, and other quality problems. For the
situation of electrically-insulted walls, in Figure 5b, the turbulent flow was suppressed in most areas of
the mold. It is interesting to note that the flow field in the mold seemed to be significantly asymmetric.
The entire left jet bent upward to the top surface, forming a large upper recirculation zone on the left of
the SEN. In contrast, the right jet bent downward to form a large lower recirculation zone on the right
of the mold. Some disconnected and discontinuous eddy structures can be seen in other positions,
which might be shed from the previous vortex structures. In the case of the electrically-conducting
walls, in Figure 5c, almost all the highly turbulent nature of the flow was suppressed, except along the
jets. A typical double-roll flow pattern was observed, and the eddy structures were more stable and
symmetric compared with the case of electrically-insulted walls.

Figure 6 shows snapshots of the instantaneous eddy structures for the case applying EMBr together
with electrically-insulated walls at sequence. Many pronounced large-scale vortex structures can be
clearly seen inside the mold, containing various small-scale vortices between them. The distribution
is asymmetric and dependent on low-frequency oscillations. The flow pattern is not stationary.
In addition, some small-scale vortices were shed from the big ones in the left lower recirculation region
of the mold, as shown in Figure 6a. This shedding of small-scale vortices may be attributed to the
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Kelvin–Helmholtz instability from the shear at the jet boundary. This is a constant phenomenon,
especially in the lower recirculation region. The low-frequency oscillations of the jets were also
observed/measured by the experiments in the mini-LIMMCAST facility at HZDR [11,22]. The DC
magnetic field in combination with the electrically-insulated walls triggered this asymmetric flow,
which was a consequence of the asymmetric nature of the MHD turbulence.Metals 2018, 8, x FOR PEER REVIEW  9 of 15 
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In order to analyze the periodicity of the low-frequency oscillations of the jets, the transient
horizontal velocity history at point 1 was monitored, as illustrated in Figure 7. The phenomenon of
alternating peaks and valleys represents the oscillation of the jets, which is a kind of periodical motion.
However, the time interval for the changeover is flexible in that it can be affected by other parameters
such as casting speed, the structure of SEN, gas injection, etc.
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Figure 8 shows the sequence of instantaneous eddy structures for the case applying EMBr together
with electrically-conducting walls at different times. The low-frequency oscillations of the jets were
well suppressed; a stable double-roll flow pattern was generated, which is in favor of producing steel
with a good quality. Except for the shear flow at the jet boundary, the shear flow on the walls plays
another important role in the creation of vortices, as shown in the figures, along with the narrow
walls of the mold. Interestingly, some linear vortex structures appeared near the bottom of the mold.
These linear vortex structures were produced by the shear along the shrinking wall corners, as shown
in Figure 2. The results indicate that the geometry of the SEN and mold, even the shape profile of the
solidified front, may contribute to the formation of turbulent eddy structures.
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4.3. Time-Averaged Velocity and Electromagnetic Field Characteristics

Figure 9 shows the contour plots of the time-averaged velocity profiles under various magnetic
field configurations. In the absence of EMBr, in Figure 9a, the fluid is discharged from the SEN port
as a strong jet impinging on the narrow wall of the mold. The liquid metal jet is then split into two
vertical streams, creating the upper and lower recirculation zone. The intensity of the downward jet
was much stronger than the upward one. The influence of the magnetic field with electrically-insulated
walls on the flow pattern can be seen in Figure 9b. The intensity of the jet was suppressed by the DC
magnetic field. The impingement points on the narrow walls of the mold moved significantly upward
to the top surface, which led to a remarkable enforcement of the upper recirculation flow. A significant
backflow toward the top surface can be observed just above the jet, but the backflows on two sides
of the SEN are still asymmetric. For the case of electrically-conducting walls, in Figure 9c, significant
changes of the liquid metal flow pattern can be observed. The turbulent flow in the center of the mold
was significantly suppressed. It is interesting to observe that some small quasi-two-dimensional vortex
structures were generated along the directions of the magnetic field as recirculation areas near the jet,
as shown in the right-hand subfigure in Figure 9c. As mentioned above, it may be the result of the
MHD turbulence in the case of electrically-conducting walls.
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Another important purpose of this work was to study the influence of different electrically-conductive
boundary conditions on the electromagnetic field. Figure 10 shows the contours of the time-averaged,
induced electrical current density on plane 1, obtained under different electrically-conductive boundary
conditions. For the case of EMBr with electrically-insulated walls, Figure 10a, no induced electrical current
could flow through the solid brass region. In another case, the electrical current could go directly through
the electrically-conducting walls. Therefore, the induced electrical current could be seen in the solid
brass regions. The value of the induced electrical current density in the solid brass was much larger
than that of the liquid GaInSn, because the conductivity of brass is much higher. The peak value
of the induced electrical current density in the center of the liquid pool for the case of EMBr with
electrically-conducting walls was 1.67 times more than that case of EMBr with electrically-insulated
walls, as shown in the inserted close-up in Figure 11. This is due to the higher velocity in the center for
the case of the electrically-conducting walls. The induced electrical current density near the walls in the
liquid pool was much larger than that in the center, as shown in Figures 10 and 11. An explanation can
be found in Figure 12, in the analysis of the vectors of the induced current on plane 1. More induced
electrical current can be observed near the walls in the liquid pool.
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Figure 12. Vectors of time-averaged induced electrical current on plane 1 (a) EMBr with
electrically-insulated walls; (b) EMBr with electrically-conducting walls.

Figure 13 shows the contours of the time-averaged electromagnetic force on plane 1 obtained
under different electrically-conductive boundary conditions. Based on Lorenz’s law (Equation (4)),
the electromagnetic force depends on the induced electrical current and magnetic field. The external
DC magnetic field intensity (maximum = 0.31 T) was much larger than the induced magnetic field
(maximum = 6 × 10−4 T). Therefore, the intensity and path of the induced electrical current had a
distinct influence on the resulting electromagnetic force. The value of the electromagnetic force was
directly related to the liquid metal velocity, and the direction was essentially opposite to that of the
liquid metal velocity. This is the mechanism of the electromagnetic brake. Therefore, the stronger
electromagnetic force can be seen along the liquid metal jets. The electromagnetic force along the jets
in the case of electrically-conducting walls is larger than that of electrically-insulated walls. In relation
to the higher induced current density (Figure 11), the electromagnetic force near the walls in the
liquid pool was much larger than that in the center, as shown in Figure 14. The electromagnetic force
in the solid region in the case of electrically-insulated walls was zero, but it was very large (up to
2.4 × 10−5 N/m3) for electrically-conducting walls. However, the electromagnetic force in this region
did not impact the behavior of the fluid region.
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5. Conclusions

A large eddy simulation (LES) model was applied to investigate the transient
magnetohydrodynamic (MHD) turbulent flow under a single-ruler EMBr in a laboratory scale
continuous-casting mold. The following conclusions can be drawn:

(1) Both the transient and time-averaged horizontal velocities predicted by the LES model agreed
well with the measurements of the UDV probes. The transient fluctuation and time-averaged
behaviors of the MHD flow in the mold was well captured by the current LES model.

(2) The Q-criterion was used to visualize the characteristics of the three-dimensional turbulent eddy
structure. Many pronounced large-scale vortex structures could be clearly seen inside the mold,
containing various small-scale vortices between them. The highly turbulent nature of the flow
could be suppressed by both configurations of the mold (electrically-insulated and conducting
walls). The shedding of small-scale vortices due to the Kelvin–Helmholtz instability of the shear
at the jet boundary was observed.

(3) For the configuration of the EMBr with electrically-insulated walls, the flow was more unstable
and changed with low-frequency oscillations. The phenomenon of alternating peaks and valleys
in the velocity represents the oscillation of the jets as a kind of periodical motion. The time
interval for the changeover was flexible.
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(4) For the configuration of EMBr with electrically-conducting walls, the low-frequency oscillations
of the jets were well suppressed. Consequently, a stable double-roll flow pattern was generated.

(5) The influence of different conductive boundary conditions on the electromagnetic field was
studied. Electrically-conducting walls can dramatically increase the density of the induced
electrical current and electromagnetic force, and can have a stabilizing effect on the MHD
turbulent flow. This conclusion indicates that in order to design EMBr for real CC processes, the
consideration of the growing solid shell of steel is of crucial importance.
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