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Abstract: The most recent developments and applications in volume-averaged modeling of
solidification processes have been reviewed. Since the last reviews of this topic by Beckermann and
co-workers [Applied Mech. Rev. 1993, p. 1; Annual Rev. Heat Transfer 1995, p. 115], major progress
in this area has included (i) the development of a mixed columnar-equiaxed solidification model;
(ii) further consideration of moving crystals and crystal dendritic morphology; and (iii) the model
applications to analyze the formation mechanisms of macrosegregation, as-cast structure, shrinkage
cavity and porosity in different casting processes. The capacity of computer hardware is still a limiting
factor. However, many calculation examples, as verified by the laboratory casting experiments,
or even by the casting processes at a small industrial scale, show great application potential. Following
the trend of developments in computer hardware (projection according to Moore’s law), a full 3D
calculation of casting at the industry scale with the multiphase volume-averaged solidification models
will become practically feasible in the foreseeable future.
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1. Introduction

One scientific challenge in developing a solidification model which is applicable for engineering
casting processes lies in the requirement to bridge the length scales, i.e., to incorporate
microstructure-scale phenomena in large-scale processes relevant to engineering or vice versa [1–4].
Numerous numerical models have been proposed targeting the phenomena at a certain level of length
scale [5–8], but no single model has been able to span the entire range of length scales from the process
scale of industrial interest (~m) down to the atomic scale (~Å) [9]. Even with an optimistic projection
of the advancement of the computational capacity, a microstructure-scale model that accounts for the
evolution of the dendritic crystal morphology via phase field or level set methods would not be feasible
for simulating a 2D casting (~m) until the year 2055 [10]. In the view of engineering applications, a
model targeting large-scale phenomena is favorable. Another issue of solidification is the involved
multiphase flow: bulk melt flow incorporated with moving equiaxed crystals, interdendritic flow in the
mushy region, formation of open cavity or enclosed gas pores, etc. With the increasing computational
capacity, a scientific discipline, called computational multi-fluid dynamics (CMFD) [11–13], since it
appeared in the late last century, was introduced into the field of solidification by Beckermann and
co-workers [3,4]. The frequently used CMFD approaches can be summarized in three categories:
Eulerian-Lagrange; free-surface tracking; and, Euler-Euler.
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- The Eulerian-Lagrangian approach, also known as Discrete Phase/Particle Method (DPM), treats
the primary fluid phase (molten alloy) as a continuum, for which the flow is solved in the
fixed-grid Eulerian framework, while the secondary phases (mass load particles, or another fluid
droplets, even gas bubbles with limited volume fraction) are treated as discrete phases, for which
the trajectories of individual particle/bubble are calculated in the Lagrangian framework. Typical
application examples are: cyclone separators, air classifiers, atomizers, dust-laden environmental
flows, etc. In the metallurgical industry, this approach was introduced for modeling blast
furnaces [14,15], non-metallic inclusions or gas bubbles in continuous casters [16–22], alloying
in ladle during tapping of steel furnaces [23], gas-melt flow in steel LD (Linz-Donawitz)
converters [24]. The method has recently been applied to track the moving crystals undergoing
solidification under the influence of forced and natural convection [25,26]. Another interesting
application in solidification is to track the liquid/solid interface of a dendrite undergoing
diffusion-governed growth in the Lagrangian framework, while calculating the melt flow in the
Eulerian framework [27]. The liquid-solid interface is marked by the discrete particles, which
move according to the diffusion-governed dendrite growth kinetics.

- Several methods are available for resolving free-surface flow: Volume of Fluid (VOF), Level Set,
Phase Field, and Lattice Boltzman Methods [28]. Two or more phases separated by sharp interface
share a single velocity field which is solved in an Eulerian framework. This method was primarily
developed for modeling issues of stratified flow, slug flow, wave, splash, Kelvin-Helmholtz
instability, and bubble/droplet formation, but metallurgists introduced it for the electro-slag
remelting (ESR) [29,30], the mold filling and gas entrapment [31–33], the droplet dynamics
in spraying coating process [34], and the formation of solidification shrinkage cavities [35].
A well-known application in solidification is the phase field method, which is widely used
for modeling the dendritic crystal growth [5,6]. As mentioned previously, this method is
computationally demanding, and is unlikely to be applicable to engineering casting processes in
the foreseeable future [9,10].

- The Euler-Euler (or Eulerian) approach is the most complex and flexible method for multiphase
flows. Different phases are treated as interpenetrating continua. The phase-related quantities
(e.g., volume fraction, velocity, enthalpy, concentration of solute element) are solved in the phase
level. The conservation equations for all phases are closed by providing constitutive relations
(closure laws) that are obtained from kinetic theories or experimentally-established correlations.
Interfacial details between phases (or morphological details of solid objects) will not be tracked
explicitly, but the key features of them and their influence on the global transport phenomena
will be modeled in the closure laws. Application examples of the Eulerian approach can be found
almost in all areas of metallurgical processes such as chemical reactions in blast furnaces [36,37],
gas purging in steel systems [38], and flotation of non-metallic inclusions in tundishes [39].
Thanks to the pioneer work of Beckermann and co-authors [3,4,40,41], the volume-averaged
solidification models were first developed by them on the base of Euler-Euler approach. During
solidification, the involving phases include the liquid melt and the as-solidified crystals, either
moving (equiaxed) or non-moving (columnar). This kind of solidification model is to calculate
the global structural (phase) and compositional distributions by considering the relative motions,
and the inter-phase exchanges (mass, momentum, species and energy). The most recent reviews
of this topic were authored by Beckermann and co-workers two decades ago [3,4].

The current article surveys the most recent development of the volume-averaged solidification
models, highlighting applications in different casting processes. Models based on the Eulerian-Lagrangian
and interface tracking (e.g., phase field) are not discussed here.
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2. Volume-Averaged Solidification Models and Solution Strategy

2.1. Governing Equations and Volume Average Operation

The transport equations for mass, momentum, energy, species etc. (Table 1), valid at the
microscopic scale, can be written in a general form

∂ψ

∂t
+∇ · (ψ⇀

u ) = −∇ ·
(
⇀
J
)
+

.
ψ, (1)

where, ψ is the volume-weighted quantity. This quantity can be directly solved in the Eulerian
framework with fixed grid. However, physical quantities (ξ) are usually defined as mass-weighted
ones. They are related by the density ρ, i.e., ψ = ρξ. Note that in momentum conservation equation
the pressure gradient force is treated as a part of source term.

Table 1. Conservation equations of microscopic transport phenomena.

Conservation Quantities ψ ξ Flux Term
⇀
J Source Term

·
ψ

Mass ρ [kg·m−3] 1 [-] 0 0

Momentum ρ
⇀
u [N·s·m−3]

⇀
u [N·s·kg−3] τ

⇀
F −∇p

Energy ρh [J·m−3] h [J·kg−3] ⇀
q = −λ∇(T) 0

Species ρc [kg·m−3] c [-]
⇀
j = −D∇(c) 0

Number density n = ρn′ [m−3] n′ [kg−3] 0 N

In order to describe the multiphase transport phenomena during solidification, a representative
volume is shown in Figure 1. For simplicity, here only a two-phase system is referred to. Equation (1)
is only valid locally in each phase region. For the motion of the solid phase, we further assume the
solid phase as a pseudo-fluid. In principle, the issue of solidification would not be solvable without
tracking the solid-liquid interface information. As mentioned before, solving the details of dendritic
morphology by tracking the moving liquid-solid interface with phase field or level set methods is
computationally costly. Therefore, there should be greater focus on the global transport phenomena
by treating the multiple phases as interpenetrating continua. A computational cell with the similar
size of the representative volume of Figure 1 can be referred to. Tracking the morphological details
of each crystal is not necessary, but their effect (e.g., as described as functions of the characteristic
morphological lengths) on the global transport phenomena must be taken into account. Note that in
the multiphase transport system, the term “phase”, as primarily defined by the material scientists,
is used differently in the field of CMFD and here in this paper. For example, in order to describe the
hydrodynamic behavior of mixed columnar-equiaxed solidification, the primary crystals of equiaxed
and columnar structures are treated as two different phases, i.e., equiaxed phase and columnar phase,
because the former can move freely while the latter is considered not movable, although both of them
belong to the same phase (crystal structure) in the material physics point of view.

By performing the volume averaging operation 〈 〉V0 of Equation (1) over the representative
volume V0 of Figure 1, we obtain〈

∂ψ

∂t

〉V0

+
〈
∇ · (ψ⇀

u )
〉V0

= −
〈
∇ ·

(
⇀
J
)〉V0

+
〈 .

ψ
〉V0

.

Note that the volume (superficial) average of a variable ψk of the phase k over the representative
volume V0 is 〈ψk〉V0 = 1

V0

∫
Vk

ψkdV; and the intrinsic average of the variable ψk of the phase k is:



Metals 2019, 9, 229 4 of 43

〈ψk〉Vk = 1
Vk

∫
Vk

ψkdV; they are related by 〈ψk〉V0 = fk · 〈ψk〉Vk . Therefore, a valid transport equation at

the macroscopic scale can be derived (referring to phase k),

∂

∂t

(
fk〈ψk〉Vk

)
+∇ ·

(
fk〈ψk〉Vk

〈
⇀
u k

〉Vk
)
= −∇ ·

(
fk

〈
⇀
J k

〉Vk

+ fk

〈
⇀
J

d

k

〉Vk
)
+ ψM

k + ψD
k + fk

〈 .
ψ
〉Vk

,

with ψ = ρξ, dropping the intrinsic operator symbol 〈 〉Vk for simplicity, it can be written in:

∂

∂t
( fkρkξk) +∇ ·

(
fkρkξk

⇀
u k

)
= −∇ ·

(
fk

(
⇀
J k +

⇀
J

d

k

))
+ ψM

k + ψD
k + fk

.
ψk. (2)

The intrinsic quantity 〈ξk〉Vk , written as ξk hereafter, represents the mean ξ of phase k in the
representative volume. Details about derivation of the macroscopic conservation equations were made
by Beckermann et al. [3,40]. Meanings of each term in Equation (2) are summarized in Table 2.
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Note:
⇀
u

int
k is the velocity of the k-j interface, which is the sum of two parts: the moving velocity of

the k-phase
⇀
u k and the growth velocity of the k-j interface due to solidification/melting

⇀
v

int
k . The j–k

interface area concentration is calculated as Sk (= Ak/V0).

Further explanations to Table 2 are as follows.

i. To calculate the diffusive fluxes
⇀
J k, effective properties µeff

k , λeff
k , Deff

k are to be defined. They
take usually the values of their physical counterparts. For solid phase k, µeff

k is modeled as a
function of fk by considering the solid particle impingement and their packing behavior.

ii. The dispersive terms
⇀
J

d

k were not considered in most multiphase solidification models, or
treated as an additional part of the effective diffusive fluxes. When a highly turbulent flow is
involved, they must be modeled explicitly.

iii. The superscript * indicates the interface quantities ξ∗k, which are different from the volume
averaged quantity ξk. It is the ξ∗k and its difference to ξk that govern the solidification/melting
induced exchange terms ψM

k ; it is the difference (ξ∗k − ξk) that determines diffusive transfer

terms ψD
k . If the k phase is solid,

⇀
u
∗
k =

⇀
u k.

iv. The surface average quantity is noted with an over bar ξ
∗
k, and ξ

∗
k = 1

Ak

∫
Ak

ξ∗k ·
⇀
n kdA.

v. Latent heat (∆h) is treated by the global definition of enthalpy, hk = hk, ref +
∫ Tk

Tk, re f
cp,kdT.

Liquid and solid at the same temperature have different enthalpies, and their difference makes
the ∆h.
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vi. The pressure p is assumed to be shared by all phases. The pressure gradient force ∇p is treated
as a part of source term in momentum conservation equations.

vii. Some symbols such as vint
k will be described and discussed in late sections.

The striking feature of this volume average approach is that the volume-averaged quantities
ξk can be directly solved at the macroscopic scale, while the local solidification phenomena, which

happen at the microscopic (interfacial) scale, can be considered in different terms
⇀
J k,

⇀
J

d

k , ψM
k , ψD

k ,
.
ψk.

Table 2. Conservation equations of macroscopic transport system (multiphase) [3,40].

2.2. Solution Procedures/Strategy

Diverse methods solving Eulerian multiphase flow are available [11,12,42–45]. Most recent
multiphase problems can be solved with the commercial solvers, e.g., the CFD software, ANSYS
FLUENT (ANSYS Inc., Canonsburg, PA, USA) [42]. As shown in Figure 2, the solver provides
a platform to solve the global transport equations (Equation (2) and Table 2). In the meantime
it provides flexibility (open program interface) in defining the exchange and source terms for the
transport equations, and even allows modification of the solution procedure. The multiphase transport
equations are highly coupled and non-linear; they must be solved in an iterative manner. For each
time step, up to 60 iterations are sometimes necessary to decrease the normalized residuals of fk,

⇀
u k,

ck, p and nk to a value below the convergence limit of 10−4, and hk below that of 10−7. In each iteration
some intermediate (auxiliary) quantities, e.g., morphological parameters describing the shape and
average diameter of crystals, are updated, and the exchange terms and the source terms are calculated.
The formulation of the solver is fully implicit, and no stability criterion has to be met. However,
due to the complexity of the multiphase coupling, the time step ∆t should be limited to ensure a
sufficient computational accuracy. The optimal time step can only be obtained empirically by trial
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simulations in such multiphase system, or by using dynamic time step control. To perform the volume
average operation, the representative volume must be large enough to include the characteristic size
of the interfacial structures (primary or secondary dendrite arm spacing) (Figure 1) [3,40], but the
computational cell (volume element) as used for solving the global transport equation system is
independent from this constraint. In some cases, the finer the cell, the better the resolution that will be
obtained. Note that the calculated results for the transport quantities, e.g., fk,

⇀
u k, hk, ck represent the

volume averaged quantities. It does not matter how fine a cell is (even finer than secondary arm spacing
of the dendrites); those quantities cannot be interpreted as field quantities of the interdendritic region.
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2.3. Models at a Glance

A series of volume-averaged solidification models have been derived, as summarized in
Table 3 [46,47]. This paper is not going to describe details of all those models, but will select some
modeling examples to explore their functionalities/capabilities and limitations.
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Table 3. Overview of volume-averaged solidification models. Reproduced from [47], with permission
from Springer, 2019.

Models Short Descriptions and Key Features Refs. *

Mixture solidification model
Enthalpy-based model;
Mixture continuum for the mushy zone;
A predefined solidification path.

[48–54]

Non-dendritic equiaxed
solidification model

Two phase: liquid and solid;
Spherical crystal morphology;
Diffusion governed crystal growth;
Flotation and sedimentation of solid.

[3,4,40,41,55–57]

Non-dendritic columnar
solidification model

Two phases: liquid and solid;
Cylindrical crystal morphology;
Diffusion governed crystal growth;
Interdendritic flow;
Channel segregation;
Bulging and soft-reduction in CC.

[58–63]

Non-dendritic mixed
columnar-equiaxed
solidification model

Three phases: liquid, equiaxed and columnar;
Cylindrical crystal morphology for columnar, and spherical for equiaxed;
Columnar tip tracking;
Diffusion governed crystal growth;
Interdendritic flow and grain sedimentation;
Columnar-to-equiaxed transition (CET);
Different segregation phenomena in steel ingot.

[64–71]

Dendritic equiaxed
solidification model

Three phases: solid dendrites, interdendritic and extra-dendritic melts;
Dendritic crystal morphology;
Shape factors for the grain envelope;
Growth of envelope according to Lipton-Glicksman-Kurz model [72];
Solidification of interdendritic melt according to diffusion.

[73–82]

Dendritic mixed
columnar-equiaxed
solidification model

Five phases: extra-dendritic melt, interdendritic melts in columnar and equiaxed
grains, solid dendrites in columnar and equiaxed grains;
Dendritic crystal morphology;
Shape factors for the grain envelope;
Growth of columnar primary dendrite tip (Kurz-Giovanola-Trivedi model [83];
growth of grain envelope (Lipton-Glicksman-Kurz model [72]);
Solidification of interdendritic melt according to diffusion;
Columnar-to-equiaxed transition (CET).

[75–77,84–88]

* This reference list cannot include all contributions. Some pioneer works, on which the recent solidification models
were further developed, can be read in the previous reviews of this topic [3,4].

3. Modeling Examples

3.1. Two-Phase Model for Equiaxed Solidification (Non-Dendritic)

Many industrial alloys solidify with equiaxed structures. In order to promote homogenous
mechanical properties, the alloys are often modified by adding a grain refiner to achieve fine
near-globular crystal morphology instead of the distinct dendrites. As a numerical model, the grain
morphology can be simplified as spherical. The growth kinetic is dominated by diffusion around
the globular crystal. A two-phase solidification model for globular equiaxed solidification was first
proposed by Ni and Beckermann [40,41], then expanded by Ludwig and Wu for refining some closure
laws [55–57], recently by Wu et al. [64,65] and Bedel et al. [89] for considering transport of both
inoculants (refiner) and globular crystals.

3.1.1. Model Description

The general description and model assumptions are as follows:

- Two phases are the primary liquid melt (phase-l) and solid grains (phase-s). Referring to Figure 1
and Table 2.

- A continuous heterogeneous nucleation law is applied for the grain nucleation [55,56].
- A 1D (spherical coordinate) steady state analytical solution is used to approximate the

diffusion-governed grain growth (Figure 3, Equation (3a)).
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- Both the liquid melt and the solid grains have different (volume averaged) concentrations, cl , cs;
the thermodynamic equilibrium condition applies at the liquid-solid interface with interfacial
concentrations, c∗l , c∗s .

- The solid phase is treated as a pseudo-fluid with an artificial viscosity, µs [3,90], which increases
with the solid volume fraction from the physical value of viscosity of the bulk melt to the ‘infinite
value’ at a so-called packing limit, f c

s . It takes 0.637 for ideally-dense packed spheres of equal
diameter. To mimic the coalescence of dendritic crystals, a packing limit with much lower solid
volume fraction (e.g., 0.2) can be used [91,92].

- Viscous interaction between settling grains and the melt is modeled with a drag law, and the flow
through the packed grains is modeled as the flow through porous media with Darcy law.

- A very large (artificial) volume heat exchange rate is applied between the two phases to mimic
the thermal equilibrium condition.

- A Boussinesq approximation is made for the thermo-solutal convection and grain sedimentation.
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Figure 3. Schematic of the spherical crystal growth of a binary alloy and solute diffusion profile.

As shown in Table 2, the solidification rate (Ms = vint
s ρsSs) is the key parameter for determining

other solidification-induced exchange terms ψM
s . The solid-liquid interface area concentration is

Ss = ns · 4πR2
s · Φimp, where Φimp is a surface impingement factor. Φimp can be simply modeled

as fl , or treated as an function of fl [70,71]. Rs is the radius of the equiaxed grain, as calculated
by Rs = 3

√
3 fs/4πns. As shown in Figure 3, the average growth velocity vint

s (the same as the

local growth velocity
∣∣∣∣⇀v int

s

∣∣∣∣) can be treated as a Stefan problem according to energy, species balance,

and thermodynamics at the solid-liquid interface [40,41].

vint
s = Dl

lj
l

· (c∗l−cl)
(c∗l−c∗s )

+ Ds

lj
s
· (c∗s−cs)

(c∗l−c∗s )

vint
s = λl

lq
l
· (T∗l−Tl)

∆h − λs
lq
s
· (Ts−T∗s )

∆h

T∗l = mc∗l
c∗s = kc∗l

. (3)

There are 4 equations for 4 unknowns vint
s , T∗l , c∗l , c∗s . The quantities cl , cs, Tl , Ts are obtained from

solving the global transport equations. Actually, most recent models assume a thermal equilibrium



Metals 2019, 9, 229 9 of 43

condition in the representative volume element (Tl ≈ Ts). The species diffusion is the only governing
factor for the crystal growth. Therefore, Equation (3) is further simplified as:

vint
s =

Dl

lj
l

·
(
c∗l − cl

)(
c∗l − c∗s

) + Ds

lj
s
· (c

∗
s − cs)(

c∗l − c∗s
) , (3a)

With the known vint
s , namely Ms, other solidification/remelting induced exchange terms

⇀
U

M

s , QM
s ,

CM
s can be calculated. The diffusion lengths are estimated as lj

l = Rs, lj
s = Rs/2, assuming a steady

state diffusion field during spherical crystal growth (Figure 3). If a parabolic diffusion profile inside
the solid is assumed, lq

s (= lj
s) can be estimated as Rs/5 [40]; and if the inter-grain impingement of

the diffusion field is considered, lq
l(= lj

l) should be calculated as Rs(1− Rs/Rf) [70,71]. This diffusion
length must be modified if the effect of turbulent flow is to be considered [41]. Referring to Table 2,
the average interfacial velocity

⇀
u
∗
s takes the liquid velocity

⇀
ul for the case of solidification, the solid

velocity
⇀
u s for the case of remelting; the average interfacial enthalpy h

∗
s takes the liquid enthalpy hl

for the case of solidification, the solid enthalpy hs for the case of remelting (hl − hs = ∆h, the latent
heat); the average interfacial concentration c∗s takes the thermodynamic equilibrium concentration c∗s
of the solid phase for the case of solidification, the volume-averaged solid concentration cs for the case
of remelting. For most metal alloys, the second term of right-hand-side in Equation (3a), which is used
to consider back diffusion in solid, is negligible. One known exceptional case is that the carbon back
diffusion in steel is important.

The law for heterogeneous nucleation has been verified for most technical alloys. The inoculants
(embryos), with their initial number density (nmax) existing in the parent melt, will be activated with
undercooling as equiaxed nuclei. The remaining inoculants and the as-activated equiaxed crystals are
quantified by their number densities: nem and ns. The transport of nem is calculated according to the
liquid velocity

⇀
ul , differently from ns, which is transported according to

⇀
ul [64,65].

∂
∂t nem +∇ ·

(
⇀
ulnem

)
= −Nnu

∂
∂t ns +∇ ·

(
⇀
u sns

)
= Nnu

, (4)

The source term Nnu determines the nucleation rate, which follows a Gaussian distribution
function of undercooling.

Nnu =
D(∆T)

Dt
· nem√

2π · ∆Tσ

· e−
1
2 ·(

∆T−∆TN
∆Tσ

)
2

, (5)

nmax, ∆TN and ∆Tσ are nucleation parameters, to be determined experimentally [79,93].
The solid phase is treated as a pseudo-fluid. Therefore, the calculation of the corresponding

momentum conservation equation requires the definition of a viscosity of the solid phase, µs, which is
caused by collisions between individual equiaxed grains. Ishii and Zuber [90] found for the viscosity of
a solid/liquid mixture: µmix = µl · (1− fs/ f c

s )
−2.5· f c

s . Assuming that the mixing rule is valid here [3],
µmix = flµl + fsµs, the viscosity of the solid phase is derived as

µs =
µl

fs
·
(
(1− fs/ f c

s )
−2.5· f c

s − (1− fs)
)

, (6)

It increases exponentially with fs until it reaches infinite value at the packing limit ( f c
s ).

The drag force (viscous stress transfer) between the liquid and solid phases is calculated by
⇀
U

D

s = Kls(
⇀
ul −

⇀
u s), where Kls is drag coefficient. Depending on the special configuration of

the fluid/solid mixture, people have suggested different models for Kls [94–99]. To calculate
Kls during globular equiaxed solidification, two scenarios are distinguished: the approach
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for the submerged-objects (Kozeny-Carman) for the case of small f s; the approach for the
flow-through-porous-medium (Blake-Kozeny) for the case of large f s.

Kls =

 180µl
f 2
s

fld2
s

for fs ≤ f c
s

µl
f 2
l

K for fs > f c
s

, (7)

where ds (= 2 × Rs) is the diameter of the equiaxed grain. K is the Darcy permeability, as calculated by
K = K0 f 3

l/ f 2
s . In order to obtain a smooth transition of Kls at f c

s , we choose the empirical parameter
K0 = d2

s /180. The above Equation (7) is valid for laminar flow, for which the Reynolds number,
Re = dsρl fl

∣∣∣⇀ul −
⇀
u s

∣∣∣/(µl · fs) [99], is less or equal to 10. For the turbulent flow, other formulations
must be considered [41,94,100].

3.1.2. Application of Globular Equiaxed Solidification Model

The first simulation with this model was made by Ni and Beckermann [41] to explore the crystal
sedimentation. Classical knowledge about the crystal sedimentation is superficial, as plotted by Ohno
in Figure 4a [101]. No quantitative correlation between the sedimentation induced solidification
results (e.g., grain size distribution, macrosegregation) and the process variables (e.g., temperature,
constitutional undercooling) could be derived, because the two-phase flow and its interplay with the
local crystal growth kinetics and the rearrangement of the grain distribution were missing. Therefore,
such exploratory simulations as done by Ni and Beckermann have become crucially important to
achieve just a mere basic understanding of this correlation.Metals 2019, 9, 229 11 of 44 
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Figure 4. Using a two-phase globular equiaxed solidification model to study the crystal sedimentation
phenomenon [55,56]. Numerical simulation was performed in a 2D (0.18 × 0.16 m2) domain for an
Al-4.0wt.%Cu alloy. (a) Schematic of the crystal sedimentation phenomenon [101]. Simulation results
(80 s) for (b) the velocity of liquid (

⇀
u l,max = 2.37 mm/s) and isolines of fraction solid, (c) the velocity of

equiaxed grains (
⇀
u e,max = 2.38 mm/s) and isolines of fraction solid, (d) the mixture concentration cmix

(dark for positive segregation, light for negative segregation) and its isolines, (e) isolines of grain size
ds in µm. Nucleation parameters: nmax = 1014 m−3, ∆TN = 10 K, ∆Tσ = 4 K.

Simulation of a 2D domain (Al-4.0wt.%Cu alloy), as cooled from side and bottom, was
performed [55,56]. The metallic die at a constant temperature of 290 K was filled instantaneously
with a melt at 925 K. The heat transfer coefficient at the casting-die interface was 750 W/(m2·K).
The simulation results to some extent have “reproduced” the scenario depicted in Figure 4a. Only the
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results at 80 s are shown in Figure 4b–e; nucleation and solidification start along the die wall. Some of
the grains sink and settle at the bottom near the corners, while some are brought by the melt flow to
the center region. Both liquid and solid phases are coupled through the momentum exchange terms.
The melt is drawn by the sinking grains, forming two vortices: one clockwise in the right half and the
other anticlockwise in the left half of the domain. Although thermo-solutal convection contributes to
the flow, the crystal sedimentation and sedimentation induced melt convection dominate. The equiaxed
grains accumulate when the local f s exceeds the packing limit f c

s . The grain accumulation is responsible
for the formation of negative segregation (A and D zones). Two mechanisms are responsible for positive
segregation: feeding the packed zones with segregated melt and squeezing it out of the segregated melt
by settling grains. The positive segregation zones are not stationary during solidification, they move
with the flow. As shown in Figure 4e, the grain size distribution is relatively uniform (about 55 µm)
along the side wall. Relatively large grains appear at the bottom of the casting center. The grains as
nucleated near the die wall sink and grow. As they reach the lower central regions, they have grown to
a grain size of 88 µm.

This globular equiaxed solidification model was later extended by different authors to investigate
the formation of globular equiaxed crystals during channel cooling of A356 aluminum alloy
(rheo-casting) [102,103], decomposition and macrosegregation during monotectic solidification [104–106],
the crystal sedimentation induced macrosegregation in steel ingots [92,107,108], and premature
solidification phenomenon during mold filling of shape casting [109]. Evaluation efforts were also
made by comparing the simulations with laboratory casting experiments [110,111]. To some extent,
the model has explained the grain sedimentation and its influence on the grain size distribution, but the
use of this model for prediction and control of the as-cast structure in real casting processes is still quite
limited. Firstly, the globular morphology is overestimated; secondly, most cases of alloy solidification
have a mixed columnar-equiaxed structure.

3.2. Mixed Columnar-Equiaxed Solidification (Non Dendritic)

The most general case of as-cast structure for industry castings is a mixed columnar-equiaxed
microstructure. During solidification crystals grow in columnar and/or equiaxed manner.
The equiaxed crystals can move, while columnar are stationary (or move with a predefined velocity).
Due to this difference, both equiaxed and columnar crystals are necessarily treated as separated phases,
although in thermodynamic point of view, they belong to the same phase.

3.2.1. Model Description

This model was proposed by the current authors [64,65]. As schematically shown in Figure 5,
3 phases are considered. The general description and model assumptions are as follows.

- Phase definition: primary liquid (phase-l), equiaxed as the first secondary phase (phase-e),
columnar as the second secondary phase (phase-c).

- Both primary liquid and equiaxed phases are moving phases, for which the corresponding
momentum equations are solved. The columnar phase is assumed to stick to the mold wall
(stationary), and solidify from the wall towards the bulk melt.

- Similar to the Section 3.1.1, the origin of the equiaxed crystals is modeled by a continuous
heterogeneous nucleation law [55,56].

- The columnar grains are assumed to originate from the mold wall. The columnar tip
position is explicitly tracked. Hunt’s blocking mechanism [112] is applied for predicting the
columnar-to-equiaxed transition (CET).

- Ideal morphologies for both solid phases are assumed: spheres for equiaxed (globular) grains,
and cylinders for columnar (cellular) dendrite trunks. The radial growth is controlled by
diffusion according to the analytically solved concentration profiles around the corresponding
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crystal. A simplified approach is suggested to treat some hydrodynamic behaviors of equiaxed
dendrites [113].

- Both the liquid melt and the solid phases have different (volume averaged) concentrations, cl ,
ce (or cc); the thermodynamic equilibrium condition applies at the liquid-solid interface with
interfacial concentrations, c∗l , c∗e (or c∗c ).

- A very large (artificial) volume heat exchange rate is applied among the three phases to mimic
the thermal equilibrium condition.

- Thermo-solutal convection and grain sedimentation are usually modeled with the Boussinesq
approach. Feeding flow due to different densities between liquid and solid must be treated
differently. For example, during continuous casting, an open calculation domain is considered,
and hot melt is allowed to be conducted from an inlet into the domain [60]. In ingot/shape
castings, an additional gas/slag phase must be added to feed the shrinkage cavity [114].Metals 2019, 9, 229 12 of 44 
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The way to treat the equiaxed solidification is same as that described in Section 3.1.1. Solidification
of the columnar and the treatment of its interaction with the equiaxed are described below.

3.2.1.1. Columnar Tip Front Tracking Algorithm

The columnar tips advance with vtip (tip growth velocity). The columnar front is assumed to grow
in the preferred direction that is closest to the temperature gradient (Figure 6). An algorithm to track
the columnar tip front, which applies to both structured and unstructured meshes and to both 2D and
3D, is proposed.

- Each control volume is marked with a status marker, ic. When ic = 1, it indicates that the control
volume contains the columnar tip front; when ic = 2, it means that the volume element has been
passed by the columnar tip front; otherwise when ic = 0, it is still in the bulk region where no
columnar tip has yet reached it. All elements are initialized with ic = 0, except for the boundary
(wall) elements, which are marked as initial condition with ic = 1.

- To each control volume, a reference length, lref, is assigned. lref is used to determine the length for
the columnar front to grow out of a volume element. lref is defined by seeing the control volume
as an equivalence sphere in 3D (or circle in 2D) with a diameter of lref. The volume of the sphere
must be equal to that of the corresponding control volume: 4π

3 · (lref/2)3 = ∆V.
- The growth velocity of the primary dendrite columnar tip, vtip, and the tip radius, Rtip,

are determined by the LGK (Lipton-Glicksman-Kurz) model [72]. Note that in the late works of
the authors, the KGT model [88] was used to track the columnar tip front [84,85]. The average
length of the columnar grains in the volume element as marked as columnar tip (ic = 1) is
calculated by the integral l =

∫
t

vtipdt, starting from the moment when the front enters the control

volume element.
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- As soon as l exceeds lref, the columnar tip front grows out of the considered volume element.
The neighboring control volume elements, which are still marked with ic = 0, will be converted
into the columnar tip elements and their status is changed to ic = 1. In the meantime the status
of the first volume element, just passed by the columnar tip front, is set to ic = 2.

- A mass transfer between the liquid to the columnar phases (solidification/melting) occurs only
for those elements of ic 6= 0.
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3.2.1.2. Competition Between Columnar and Equiaxed

Crystals start to grow in the chill zone (casting surface) as an equiaxed morphology. As the
solidification progresses, a temperature gradient is gradually established. The growth of the crystals
becomes unidirectionally against the heat flux direction, and then columnar structure develops. This is
called as equiaxed-to-columnar transition, i.e., ECT. This chill zone is here ignored, and it is assumed
that the columnar grains originate directly from the mold wall. In the late stage of solidification, new
equiaxed crystals nucleate and grow in the liquid ahead of columnar zone. The growth of a columnar
structure will be blocked by the equiaxed crystals leading to columnar-to-equiaxed transition, i.e.,
CET. When the motion of equiaxed crystals and their interactions with the growing columnar phase
are considered, the aforementioned ECT and CET become more complex. The following algorithm
is suggested.

- Both columnar and equiaxed phases can coexist in the same volume element. When f c (local
volume fraction of the columnar phase) is more than a critical value, f free

c (e.g., 0.2), an infinite
drag force coefficient is applied between the two solid phases in the corresponding momentum
equations, and thus the equiaxed grains are “captured” by the columnar phase. When f c <
f free
c , no drag force is applied, and thus, the motion of the equiaxed grains is not affected by the

columnar dendrite tips. The validation of the critical value f free
c = 0.2 is discussed elsewhere [65].

- The columnar tip blocking mechanism of Hunt [112] is implemented for the CET. In those volume
elements, that contain the columnar primary dendrite tips, the tip growth velocity, vtip, is set to
zero as soon as the local volume fraction of the equiaxed grains, f e, exceeds the critical threshold
of fe,CET = 0.49. A recent study suggested a value of 0.2 should be taken for fe,CET [115,116].
The impingement of the solute concentration fields between equiaxed and columnar growths,
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also known as the ‘soft blocking mechanism’ for CET as proposed by Martorano et al. [117],
is automatically included in the model.

- Equiaxed crystals coagulate with each other. When f e (volume fraction of equiaxed) becomes
larger than the packing limit (0.637), the equiaxed phase builds a rigid network. As the equiaxed
phase hits the mold wall (stationary), the velocity of the equiaxed phase is set zero, and then the
equiaxed phase is considered as rigid and stationary as well. This rigid and stationary equiaxed
phase region is tracked (numerically marked). New columnar dendrite tip front will initiate/grow
from the outer contour of the marked rigid-equiaxed crystal region, triggering the ECT again [63].

- The columnar solidification competes with the equiaxed solidification. When the growth of
the columnar tip front “overtakes” the growth of equiaxed phase, ECT is triggered. Otherwise,
the growth of the columnar is suppressed and CET is triggered. The following algorithm is
implemented to judge if the growth of columnar can “overtake” the growth of equiaxed phase.
If the columnar tip front can grow out of the considered volume element before fe reaches a
blocking limit ( fe,CET), the columnar primary tip front can continue to grow into the neighboring
cell or cells. In contrast, if the columnar tip front cannot grow out of the considered volume
element before fe reaches fe,CET, CET occurs.

3.2.1.3. Diffusion Governed Growth of Columnar Phase

Referring to Table 2, the solidification rate of a solid phase is calculated by Ms = vint
s ρsSs.

Here different subscript, Mlc, is used to describe the interphase mass transfer (instead of the symbol Ms,
as here more than one solid phases are considered). The subscript s will be replaced by corresponding
c or e. To calculate Mlc, 2 states of the volume elements have to be distinguished: (i) volume elements
that have been passed by the columnar tips (ic = 2) and (ii) volume elements which contain the
columnar tips (ic = 1).

For the elements of ic = 2, where the columnar trunks have passed the volume element:

Mlc= vint
c ρcStrunk

c , (8a)

while for the elements of ic = 1, which include columnar primary dendrite tips:

Mlc= vint
c ρcStrunk

c,tip +vtipρcSc,tip. (8b)

The radial growth velocity of the columnar trunk is calculated as

vint
c =

Dl

lj
l,c

·
(
c∗l − cl

)(
c∗l − c∗c

) + Ds

lj
s,c
· (c

∗
c − cc)(

c∗l − c∗c
) , (9)

where lj
l,c and lj

s,c are species diffusion lengths in the interdendritic liquid and in the solid columnar

dendrites, and they are calculated as lj
l,c = Rc · ln(Rf/Rc) and lj

s,c = Rc/2 (with an assumption of

parabolic diffusion profile inside the solid dendrite [40], lj
s,c can be taken as Rc/5). Depending on

different arrangements (aligned and staggered) of the columnar trunks, the radius of the columnar

trunk (Rc) can be calculated: Rc = λ1 ·
√

fc/π for aligned array; Rc = λ1 ·
√√

3 fc/2π for staggered

array. Rf is the maximum radius that the columnar trunk can reach at fc = 1. The growth area Strunk
c is

2πRc/λ2
1 ·Φc,imp for the aligned array,

(
2/
√

3
)
· 2πRc/λ2

1 ·Φc,imp for the staggered array. The growth

area impingement factor Φc,imp is min[ fc/ (1−π/4), 1] for the aligned array, min
[

fc/ (1−π/
√

12
)

, 1
]

for the staggered array. The growth velocity of the primary dendrite tip (vtip) and the tip radius (Rtip)
are known from the LGK model [72]. The growth area (projection in the growth direction) of the
columnar dendrite tip is calculated as Sc, tip = nc · πR2

tip · fl , where nc is the number density of the
columnar trunks ( fc/

(
πR2

c · l
)
), and fl is here considered as the growth area impingement factor in
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the volume element considering columnar dendrite tips. The surface area of columnar trunks in the
volume element containing columnar primary dendrite tips is calculated as Strunk

c,tip = nc · 2πRcl · fl ,
where l is the length of the columnar trunk in the considered volume element.

3.2.1.4. Permeability in the Columnar Mushy Zone

The drag force between interdendritic liquid and the columnar dendrites is calculated by
⇀
U

D

lc = Klc(
⇀
ul −

⇀
u c). The Blake-Kozeny approach is used to calculate the drag coefficient

Klc = − f 2
lµl/K, where the isotropic permeability K is described as a function of the fraction liquid

and the primary dendrite arm spacing [118]:

K = 6× 10−4λ2
1

f 3
l

(1− fl)
2 , (10)

Literature data on K in solidifying dendrites show a wide scatter [119–123]. Permeability is a
volume-averaged quantity, which was originally defined to describe the flow through porous medium
of “homogenous structure”. The solidifying crystal structure (morphology) is not homogenous.
In addition to the fraction liquid (or solid) and primary arm spacing, other morphological parameters,
such as structural anisotropy, tortuosity, etc., influence the interdendritic flow direction as well.
This paper is not intended to represent comprehensive review on this topic, but the importance of
choosing an appropriate permeability law should not be underestimated.

3.2.2. Application of Mixed Columnar-Equiaxed Solidification Model

The first exploratory simulation using this model to explain mixed columnar-equiaxed
solidification was made [64,65]. As shown in Figure 7, a model ingot with an under-scaled size was
considered. The overall solidification sequence is governed by heat transfer, but it is strongly influenced
by the melt convection and the grain sedimentation. The solidification, i.e., the growth of columnar
phase, starts when the surface temperature drops below liquidus. In the meantime, the equiaxed
grains nucleate and grow. Near the wall, they sink and induce melt convection. The sinking crystals
drag the melt downwards along the wall, and induce a rising melt flow in the middle of the casting.
Additionally, the thermal-solutal buoyancy also contributes to the overall melt convection. With the
progress of solidification, the volume fraction of the columnar phase (f c) in the mold wall region
increases. In the vicinity of the columnar tip front the equiaxed grains continue to nucleate, grow and
sink. The sedimentation of the equiaxed grains plays an important role in the final as-cast structure.
The sinking grains pile up in the lower region of the ingot. This pile-up of the equiaxed grains can
block the growth of columnar tip front in the lower region, causing CET in an enclosed conic shape.
It is this kind of convection and grain sedimentation phenomena that are responsible for the formation
of macrosegregation as typically observed in steel ingots, i.e., a positive segregation at the top region
and a negative segregation cone, corresponding to the equiaxed zone, in the bottom.

This model has been recently extended to simulate the formation of the as-cast structure and
macrosegregation in industry ingots [113,114,124]. Major extensions to the original model are to treat
the dendritic morphology of the equiaxed crystals and the formation of shrinkage cavity. The previous
assumption of the ideal globular morphology of the equiaxed grain leads to overestimation of the
macrosegregation [64,65,69,93].

As inspired by the “grain envelope approach” [73–82], a simplified dendrite envelope
approach [113,124] is suggested to treat (i) the liquid-equiaxed (dendritic) drag force, (ii) the blocking
mechanism of the columnar tip growth by the dendritic equiaxed grains, and (iii) the ‘solid viscosity’
and the packing limit. Ignoring the solidification shrinkage by the previous model would cause error
estimation of the as-cast structure and macrosegregation in the top region, and would also neglect the
segregation, as caused by the shrinkage-induced feeding flow in the deep mush zone and near the
end of the solidification region. To solve this problem, an additional phase (the phase number 4), i.e.,
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gas phase (or covering liquid slag phase), is introduced into the model. The gas phase has no mass
and species exchange with the metal phases, but it is coupled with them by taking into account the
momentum and energy exchanges. This four phase mixed columnar-equiaxed solidification model
was described elsewhere [114].
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Figure 7. Using the mixed columnar-equiaxed solidification model to study the solidification in a model
ingot (Fe-0.34 wt.% C) with a under-scaled geometry (ϕ66 mm × 170 mm) [64,65]. This figure shows
the solidification sequence at 20 s. f c and f e are shown in color scale in two vertical and one horizontal
sections, while
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Figures 8–10 display a modeling result for a 36-ton steel ingot, and comparison with the
experiment [125]. Experimental analysis of this ingot was recently published by Duan et al. [126]. Some
most simulation relevant process parameters including casting geometry, alloy composition (Fe–0.51
wt.% C–0.23 wt.%Si–0.6 wt.%Mn–0.13 wt.%Ni–0.006 wt.%S–0.009 wt.%P), pouring temperature
(1833 K), mold configuration, thermal boundary condition as derived from temperature measurements
were reported; and macrosegregation map across a half vertical section as analyzed using infrared
carbon-sulphur analyzer with good resolution (30 × 30 mm2) were presented.

The solidification sequence is shown in Figure 8. The cooling and solidification starts from the
mold wall. A columnar structure develops there and grows towards casting center. Equiaxed crystals
nucleate and grow in front of columnar tips, and those equiaxed grains sink and settle at bottom of
the ingot. The melt is dragged downwards by the sinking grains, which in turn induces a rising melt
flow in the ingot center region. Both

⇀
ul and

⇀
u e fields are instable and non-axisymmetric. As the

melt flow and the motion of the equiaxed crystals are fully coupled with energy, species and mass
transport phenomena, both the melt flow and crystal motion will influence the solidification sequence.
Sedimentation of crystals in the bottom region will cause f e to increase significantly. As f e in front of
the columnar tip front is high enough, CET (columnar-to- equiaxed transition) occurs. In the upper
part of the ingot, the columnar tips can continue to grow. The flow (bulk and interdendritic) and
crystal sedimentation are key mechanisms for the formation of macrosegregation in such ingots.

The simulation-experiment agreement is very promising, either regarding the segregation map
(Figure 9) or the segregation profiles along different lines (Figure 10). This approach also provides
reasonable shrinkage cavity information. The macrosegregation map in the ingot is by no means
axisymmetric. It is worth mentioning that the experimentally-determined segregation map was
mirrored from half section of measured result. The modeling result, Figure 9a Section C, shows a
strong tendency of A-segregates in the upper part of the ingot.
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with the experimental specimen (36-ton ingot). Reproduced from reference [125], with permission from
John Wiley and Sons, 2019.
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This mixed columnar-equiaxed solidification model was mostly applied to study
macrosegregation in steel ingots [69,124,125,127–129], but it was also used analyze solidification
during direct chill casting of copper alloys [130,131] and continuous casting of steel [132]. In the
meantime, this model is being continuously improved by considering the multicomponent alloy [69,70]
and the fragmentation rates [133]. Laboratory evaluations of the model were made in addition to the
aforementioned procedures [128,134–136].

3.3. Incorporation of Dendritic Morphology

When incorporating a dendritic morphology into the multiphase volume-averaged solidification
models, it is necessary to consider different phase regions. For example, the liquid melt, which is
enclosed in the deep dendrite (interdendritic melt), has a far different solute concentration than the
extra-dendritic melt. Although the inter- and extra-dendritic melts are in the same state of liquid, they
have different thermodynamic properties and govern different crystal growth kinetics. In addition to its
variety of concentrations, the diffusion length associated with the interdendritic melt is different from
that with the extra-dendritic melt. Their hydrodynamic behavior may even differ: the interdendritic
melt is more prone to be entrapped in the dendrite network moving together with or sticking to the
crystal dendrite, while the extra-dendritic melt may be free to flow in other direction. It is necessary to
consider the inter- and extra-dendritic melts as separate “phases”.

3.3.1. Envelope Description

A concept of “grain envelope” was first introduced by Rappaz and Thevoz [73,74], and a
micro-macro solidification model, namely solute diffusion model, was proposed. This model
was later incorporated into the multiphase volume-averaged solidification model by Wang and
Beckermann [75–78]. More recently, it was extended by Wu and Ludwig [81,82,84,85] and many other
research groups [26,137–141], to enhance the model’s accuracy.

As shown in Figures 11 and 12, a smooth hypothetical contour connecting primary (or primary,
secondary and tertiary) dendrite tips (dashed line), called as grain envelope, is constructed to separate
the inter- and extra-dendritic melts. Definition of the grain envelope seems subjective, but it influences
the modeling accuracy. During metal alloy solidification, the Lewis number (ratio between thermal
and mass diffusivities) is in the order of magnitude 3. A consideration of complete ‘thermal mixing’ at
the scale of one grain (or even inside the representative volume of Figure 1) is widely accepted; hence,
the growth of dendrite is dominantly controlled by solute diffusion, either inside or at the boundary
of the grain envelope. A key assumption, necessarily made here, is that the interdendritic melt has
a homogenous solute distribution which is significantly different from that of the extra-dendritic
melt. The evolution of the dendritic grain (i.e., the expansion of grain envelope) is governed by the
growth kinetics of the dendrite tips, which is dependent on the constitutional undercooling of the
extra-dendritic melt and the diffusion length scale at the dendrite tip; while the solidification of the
interdendritic melt is governed by the growth kinetics of the solid-liquid interface, which occurs at the
diffusion length scale of the inter-secondary dendrite arm spacing. If a reasonable grain envelope could
be defined (the volume averaged solute concentration cd can represent the local solute concentration
of the interdendritic melt), and the diffusion or mixing length scale of the interdendritic melt is much
smaller than the extra-dendritic melt, an assumption of complete ‘solute-mixing’ of the interdendritic
melt (cd = c∗l = cenv) would be valid [73,74,76–80]. In that case, solidification of the interdendritic melt
(i.e., evolution of the solid phase inside envelope) could be derived indirectly from the mass/solute
conservations. Otherwise the solidification of the interdendritic melt must be calculated explicitly
according to the diffusion-governed growth kinetics at the solid-liquid interface [81,82,84,85].
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Figure 11. Concept of an equiaxed grain envelope and schematic of solute distribution in different phase
regions. An equiaxed dendrite is presented by a “natural grain envelope” separating melts in the inter-
and extra-dendritic regions, and the envelope contour connects the primary (or primary and secondary)
dendrite tips (dashed line). This natural grain envelope is further modeled as a volume-equivalent
sphere. The growth velocity of the volume equivalent sphere (ve

env,M) can be derived from the dendrite
tip velocity (ve

tip′) if the shape of the envelope is preserved/known. The grain envelope encloses two
different phase regions: solid dendrites and interdendritic melt. Solute distribution profiles in different
phase regions are shown with dotted lines, whose intrinsic averages (cs, cd, cl) are shown with solid
lines. c∗s , c∗l are thermodynamic equilibrium concentrations, valid at the solid-liquid interfaces; cenv

is the averaged concentration of the grain envelope. Reproduced from [84], with permission from
Elsevier, 2019.
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Figure 12. The shape of the columnar trunk envelope is simplified as a step-wise cylinder with cross
sectional area equivalent to the tree-trunk envelope (dashed line), which connects the secondary and
tertiary dendrite tips. The contour of the columnar envelope near the primary dendrite tip (dashed
line connecting the primary and secondary dendrite tips) is simplified as a paraboloid. Reproduced
from [84], with permission from Elsevier, 2019.

One further modeling step is that the grain envelope is necessarily simplified as a volume
equivalent sphere with a radius of Re. From the known growth velocity of the dendrite tips (ve

tip′),
the radial growth velocity of the volume equivalent sphere (ve

env,M = Φe
env · ve

tip′) can be derived by

conserving the volume of the ‘natural’ grain envelope with the volume equivalent sphere (4πRe3/3),
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where Φe
env is the shape factor. As shown in Figure 11, the solute transfer by diffusion from the grain

into the extra-dendritic melt is carried out at the surface of the ‘natural’ grain envelope (Se
env,D: area

concentration), which is identical to the interface between d and l phases. Different from the surface
area of the volume equivalent sphere (Se

env,M = 3Re2/R3
f ), Se

env,D = Se
env,M/Φe

sph, where Φe
sph is called

as sphericity of the grain envelope. It is crucial to have two morphological parameters, i.e., the shape
factor Φe

env and the sphericity Φe
sph, to describe the grain envelope. It is Φe

env that connects the radial
growth velocity of the volume equivalent sphere with the dendrite tip growth velocity; it is Φe

sph that
helps estimation of the area of the “natural” grain envelope from the area of the volume equivalent
sphere. If the envelope is shape-preserving during crystal growth, both parameters are constant, and
they can be derived from the geometry of the envelope shape.

Examples of grain envelopes for both equiaxed and columnar dendrite structures are collected
in Table 4. Note that two superscripts, e and c, are used to distinguish the equiaxed and columnar
dendrites. For columnar dendrite (Figure 12), an area equivalent circle is used to model the cross
section of columnar grain envelope. Again, two morphological parameters, i.e., shape factor Φc

env and
the circularity Φc

circ, are used to describe the columnar grain envelope.

Table 4. Morphological parameters for envelopes of selected dendrite structures [84]. Reproduced
from [84], with permission from Elsevier, 2019.

Equiaxed † Columnar (Cross Section)

Sphere
Φe

env = 1;
Φe

sph = 1
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3.3.2. Mixed Columnar-Equiaxed Solidification with Dendritic Morphology

3.3.2.1. Phase Definition

To describe the multiphase transport phenomena of the mixed columnar-equiaxed solidification
(Figure 5), three hydrodynamic phases are defined: e-, c- and l-phases. They are quantified with their
volume fractions fe, fc, fl . They move with corresponding velocity:

⇀
u e,

⇀
u c, and

⇀
ul . The velocity

of the c-phase,
⇀
u c, is predefined: zero for the shape/ingot casting; the withdrawing speed for

continuous casting; or as input field value from a thermal mechanical model (deforming dendrites).
In order to consider the dendritic morphology, two distinct phase regions exist in each equiaxed or
columnar structure: the solid dendrite and interdendritic melt. We assume that both solid dendrite and
interdendritic melt inside one envelope share the same velocity. For the same mixed columnar-equiaxed
solidification system, five phase regions are defined: the interdendritic melt in the equiaxed grain,
the solid dendrites in the equiaxed grain, the interdendritic melt in the columnar dendrite trunk,
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the solid dendrites in the columnar dendrite trunk, and the extra-dendritic melt. We name the five
phase regions as “thermodynamic” phases, and they are quantified with volume fractions ( f e

s , f e
d, f c

s ,
f c
d, fl), and characterized by their corresponding solute concentrations (ce

s , ce
d, cc

s, cc
d, cl). Following

the phase definition above, two thermodynamic phases inside an equiaxed grain envelope, the solid
dendrites ( f e

s ) and interdendritic melt ( f e
d), combine to form a single hydrodynamic phase ( fe) moving

with the velocity
⇀
u e. Similarly, the thermodynamic phases inside a columnar envelope, the solid

dendrites ( f c
s ) and interdendritic melt ( f c

d), form a second hydrodynamic phase ( fc) moving with
⇀
u c. The extra-dendritic melt singularly forms the third hydrodynamic phase ( fl). The volume
fraction of each phase region inside the grain envelope is denoted as αe

d, αe
s , αc

d, αc
s with subscripts

d for interdendritic liquid and s for dendritic solid. For example, inside an equiaxed grain, volume
fractions of interdendritic liquid and dendritic solid are quantified with αe

d, αe
s , hence, f e

d = αe
d · fe and

f e
s = αe

s · fe. For a globular equiaxed grain, αe
d = 0, hence, f e

s = fe.

3.3.2.2. Growth Kinetics

• Equiaxed Growth

An equiaxed grain, immediately after nucleation, starts to grow with globular morphology.
The growth of a globular grain (ve

glob) was described in detail in Section 3.1 by Equation (3a) [64,65].

A different symbol vint
s was used for ve

glob there. Following the growth-mode transition from globular
to dendritic [81], the grain becomes dendritic. Then, the growth velocity of the primary dendrite tips is
determined according to the LGK model [72,144].

ve
tip′ =

Dl ·ml · c∗l · (k− 1)
Γ · π2

(
Iv−1(Ω)

)2
, (11)

ve
env, M= Φe

env · ve
tip′, (11a)

here ve
env, M is the growth velocity of the volume equivalent sphere, Ω is constitutional supersaturation(

c∗l − cl
)
/
(
c∗l − c∗s

)
, Iv−1(Ω) is the inverse Ivantsov function, which can be approximated as a

(
Ω

1−Ω

)b

with a = 0.4567 and b = 1.195 [74]. A simple approach is used to determine the globular-to-dendritic
transition (GDT) by making a direct comparison between two growth velocities, ve

glob and ve
env, M.

Therefore, the general formulation for the growth velocity of the equiaxed grain is

ve
env = max

(
ve

glob, ve
env, M

)
. (12)

In another study, the stability criterion for growing spheres as proposed by Mullins and Sekerka
was used to determine the GDT [145–147]. With the known ve

env and Se
env, M, the volume averaged

mass transfer rate from l-phase to e-phase can be calculated by Mle = ve
env · Se

env, M · ρe.

• Columnar Growth

An algorithm for tracking the columnar primary tip front was described in Section 3.2.1.1
(Figure 6). Columnar trunks start to grow with cellular morphology. This morphology is simplified as
a stepwise cylinder. The diffusion-governed growth of a cylinder is detailed in Section 3.2.1.3 [64,65].
Following the cellular-to-dendritic transition (CDT), the morphology of the trunk becomes dendritic.
To model the dendritic growth of columnar structure, two zones are distinguished: the zone containing
only columnar trunks, and the zone containing columnar primary dendrite tips (Figure 12). Near the
primary dendrite tip, the envelope borders the tips of primary and secondary dendrite. In the zone far
away from the primary dendrite tip, the envelope borders the tips of secondary and tertiary dendrites.
The longitudinal section of the envelope near the primary dendrite tip is assumed to be a paraboloid.
The shape of the dendrite trunk away from the primary dendrite tip can be described as being either a
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cylinder, square rod or four orthogonal square wedges connecting the secondary and tertiary dendrite
tips (Table 4).

The radial growth velocity of the volume equivalent cylinder (vc
env, M) is calculated from the

growth velocity of the secondary dendrite tip: vc
env, M = Φc

env · vc
tip′′ , where Φc

env is a shape factor.
The diffusion area of the columnar envelope (Sc

env,D) is estimated according to the surface area of the
volume-equivalent cylinder (Sc

env,M) by considering a circularity factor Φc
circ: Sc

env,D = Sc
env,M/Φc

circ.
For cellular trunk, both Φc

env and Φc
circ are equal to one.

Assuming a constant primary dendrite arm spacing, λ1, the volume-equivalent cylinder has an
average diameter of dc(= 2 Rc). They are correlated to the fraction of columnar phase by

fc = π(dc/2)2/λ2
1, (13)

the surface concentration Sc
env, M of the volume equivalent cylinder is calculated with

Sc
env, M = Φc

Imp ·
πdc

λ2
1

, (14)

where Φc
Imp, approximated as fl , is an impingement factor. Equations (13) and (14) applies for both

cellular and dendritic growth. Equation (14) is derived by assuming that the array of the columnar
dendrite trunks is aligned. For the staggered array of the columnar trunks, the πdc/λ2

1 is replaced by(
2/
√

3
)
· πdc/λ2

1.
For the volume elements containing primary dendrite tips, a fictitious grain envelope (dashed line)

enclosing the primary and secondary dendrite tips is shown in Figure 12. This envelope is simplified as
a volume equivalent paraboloid, described elsewhere [84]. In a volume element that contains primary
dendrite tips, a paraboloid with a diameter of dc and a length of l is used to represent the contour of
the primary dendrite tip. The length of the paraboloid is explicitly tracked with the method described
in Section 3.2.1.1. The same shape factor Φc

env and circularity Φc
circ are employed to simplify the shape

of the parabolic envelope. dc and Sc
env, M of the volume-equivalent paraboloid in the volume element

containing primary dendrite tips are calculated as

fc =
πdc2

8
· l · nc, (15)

Sc
env, M = Φc

Imp · Sparab · nc, (16)

Note that these formulations differ from Equations (13) and (14) for columnar trunk growth.
Sparab is the surface area of the paraboloid, πdc

96l2 ·
((

16l2 + dc2)3/2 − dc3
)

; nc is “number density” of

the columnar dendrites inside the volume tip-containing element, 1/
(
λ1

2 · lref · 3
√

π/6
)
.

• Solidification of Melt in the Interdendritic Region

Solidification of the interdendritic melt—it does not matter if it is in both equiaxed and columnar
growth—is driven by supersaturation and governed by solute diffusion in the interdendritic melt.
The solidification rate of interdendritic melt is determined by the d-s interface growth velocity ve

sd
and the d-s interface area concentration Se

s . The driving force for ve
sd is

(
c∗l − ce

d

)
/
(
c∗l − c∗s

)
, but it is

governed by diffusion at the length scale le
d, which is related to the secondary arm spacing λ2 [75,81]

by le
d = β2 · (λ2 − d2)/2, where β2 is a constant on the order of unity and d2 is the diameter of the

secondary dendrite arms. It is assumed that d2 is correlated to λ2 by λ2 − d2 = λ2 · αe
d, thus:

ve
sd =

2 · Dl

β2 · λ2 · αe
d
·

c∗l − ce
d

c∗l − c∗s
, (17)
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the d-s interface area inside the grain envelope is also proportional to the secondary arm spacing
(∝ 2/λ2). Considering an impingement factor Φs

Imp (= αe
d) for the growing surface, the d-s interfacial

surface concentration, in reference to the total volume, is calculated as Se
s =

2·Φs
Imp

λ2
· fe. For globular

growth, the above equation does not apply; Se
s must be equal to Se

env,M. Note that Equation (17) is
equally valid for columnar growth, although a superscript “e” indicating the equiaxed growth is
referred to.

3.3.2.3. Conservation Equations and Solution Strategy

Sixteen independent transport quantities, n, fe, fc, f e
s , f c

s , p,
⇀
ul ,

⇀
u e, cl , ce, cc, ce

s , cc
s, hl , he, hc, are to

be computed. Here a velocity vector (
⇀
ul) is counted as one transport quantity, although its components

(ul , vl , wl) are necessarily solved individually for each momentum conservation equation. Other
intermediate variables can be derived from the above transport quantities.

fl + fe + fc = 1⇒ fl = 1− fe − fc,
f e
s = αe

s · fe ⇒ αe
s = f e

s / f e, αe
d = 1− αe

s , f e
d = αe

d · fe,
f c
s = αc

s · fc ⇒ αc
s = f c

s / f c, αc
d = 1− αc

s, f c
d = αc

d · fc,
ce = αe

d · c
e
d + αe

s · ce
s ⇒ ce

d = (ce − αe
s · ce

s)/αe
d,

cc = αc
d · c

c
d + αc

s · cc
s ⇒ cc

d = (cc − αc
s · cc

s)/αc
d.

Temperatures, Tl , Te, Tc, are derived directly from the enthalpies, hl , he, hc. All hydrodynamic
phases share a single pressure field p.

The above transport quantities are solved on the base of the hydrodynamic phases. The formulations
of the conservation equations for the hydrodynamic phases are quite similar to those in the previous
three-phase mixed columnar-equiaxed (non-dendritic) solidification model (Section 3.2) [64,65]. Here,
special attention must be paid for the mass and species conservations.

The mass conservation equations are

∂

∂t
( flρl) +∇ ·

(
flρl

⇀
ul

)
= −Mle −Mlc, (18)

∂

∂t
( feρe) +∇ ·

(
feρe

⇀
u e

)
= Mle −Mec, (19)

∂

∂t
( fcρc) +∇ ·

(
fcρc

⇀
u c

)
= Mlc + Mec, (20)

∂

∂t
( f e

s ρe) +∇ ·
(

f e
s ρe

⇀
u e

)
= Me

ds, (21)

∂

∂t
( f c

s ρc) +∇ ·
(

f c
s ρc

⇀
u c

)
= Mc

ds. (22)

The species conservation equations are

∂

∂t
( flρlcl) +∇ ·

(
flρl

⇀
ulcl

)
= −Cle − Clc, (23)

∂

∂t
( feρece) +∇ ·

(
feρe

⇀
u ece

)
= Cle − Cec, (24)

∂

∂t
( fcρccc) +∇ ·

(
fcρc

⇀
u ccc

)
= Clc + Cec, (25)

∂

∂t
( f e

s ρece
s) +∇ ·

(
f e
s ρe

⇀
u ece

s

)
= Ce

ds, (26)

∂

∂t
( f c

s ρccc
s) +∇ ·

(
f c
s ρc

⇀
u ccc

s

)
= Cc

ds. (27)
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Neglecting crystal fragmentation and attachment phenomena, the mass transfer rate between
the columnar and equiaxed phases Mec is equal to zero, and Cec ≡ 0. In order to close the above
conservation equations, the corresponding source terms, Mle, Mlc, Me

ds, Mc
ds, Cle, Clc, Ce

ds, and Cc
ds,

must be defined according to the aforementioned growth kinetics.
The mass and species transfers for equiaxed solidification are summarized in Tables 5 and 6.

For dendritic growth, species transfer between the extra-dendritic melt and the equiaxed grain Cle

includes the transfer into the grain envelope due to the expansion of the envelope, CM
le, and the

diffusive flux from the inter- to the extra-dendritic melts, CD
le. Back diffusion in solid dendrites is

ignored here.

Table 5. Mass transfer rates for equiaxed solidification.

Mass Transfer Rate For Globular Growth For Dendritic Growth

(l ⇒ e ) Mle Mle = ve
env · Se

env,M · ρe

( d⇒ s ) Me
ds Me

ds = Mle Me
ds = ve

sd · S
e
s · ρe

Table 6. Species transfer rates for equiaxed solidification.

Species Transfer Rate For Globular Growth For Dendritic Growth

(l ⇒ e ) Cle = CM
le + CD

le

CM
le CM

le = c∗s ·Mle CM
le = ce

env ·Mle

CD
le -

CD
le = −ρl · Se

env,D · J
e
l

with Je
l = Dl · (ce

env − cl)/le
l

( d⇒ s ) Ce
ds Ce

ds = c∗s ·Me
ds

The mass and species transfers for columnar solidification are summarized in Tables 7 and 8.
For dendritic growth, the species transfer between the extra-dendritic melt and the columnar dendrite
trunks Clc includes species transfer into the dendrite trunk envelope due to expansion of the envelope,
CM
lc, and the diffusive flux from the inter- to the extra-dendritic melts, CD

lc. Back diffusion in solid
dendrites is ignored.

Table 7. Mass transfer rates for columnar solidification.

Mass Transfer
Rate

For Cellular Growth For Dendritic Growth

Trunk
Element

Tip Element Trunk
Element

Tip Element

l>Rc
tip′ l≤Rc

tip′ l>Rc
tip′ l≤Rc

tip′

(l ⇒ c ) Mlc
Mlc =vc

env ·
Sc

env,M · ρc

Mlc =
vc

env · Sc
env,M · ρc

+ Mc
tip′

Mlc = Mc
tip′

Mlc =vc
env ·

Sc
env,M · ρc

Mlc =
vc

env · Sc
env,M · ρc

+ Mc
tip′

Mlc = Mc
tip′

( d⇒ s ) Mc
ds Mc

ds = Mlc
Mc

ds =
vc

sd · S
c
s · ρc

Mc
ds =

vc
sd · S

c
s · ρc +

Mc
tip′

Mc
ds = Mlc

Table 8. Species transfer rates for columnar solidification.

Species Transfer Rate For Cellular
Growth

For Dendritic Growth

Trunk Element
Tip Element

l>Rc
tip′ l≤Rc

tip′

(l ⇒ c )
Clc = CM

lc + CD
lc

CM
lc CM

lc = c∗s ·Mlc CM
lc = cc

env ·Mlc

CM
lc =

cc
env · vc

env · Sc
env,M · ρc +

c∗s ·Mc
tip′

CM
lc = c∗s ·Mlc

CD
lc -

CD
lc = −ρl · Sc

env,D · J
c
l

with Jc
l = Dl · (cc

env − cl)/lc
l

CD
lc = −ρl · Sc

env,D · J
c
l -

( d⇒ s ) Cc
ds Cc

ds = c∗s ·Mc
ds
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In Tables 7 and 8, the contribution to the mass transfer due to growth of the columnar dendrite
tips, Mc

tip′, is calculated as

Mc
tip′= nc · π

(
Rc

tip′

)2
· vc

tip′ · ρc · fl , (28)

As shown in Tables 6 and 8, the diffusion length around the envelope ll (le
l or lc

l) is estimated
by the envelope growth velocity, Dl/venv, where venv represents ve

env or vc
env. Different methods for

estimating ll have been suggested [73–75,117,142,143]. In the present model, the Dl/venv formulation
is preferred for its reasonable approximation and numerical simplicity [81]. The physical bounds of ll
dictate that it should never be larger than half of the inter-grain spacing. Two extreme cases where
ll = Dl/venv may lead to an unrealistic estimation should be avoided. One is the infinitely small
envelope growth velocity; the other is the late stage of solidification when growing grains/trunks
impinge upon one another. Additionally, we assume that ll should not be smaller than the diffusion
length of the interdendritic melt, le

d or lc
d, therefore, the following corrections to ll are made,

ll =


y1/2 when Dl/venv ≤ y1/2
Dl/venv

y2/2 when Dl/venv ≥ y2/2
, (29)

where y1 is the interdendritic spacing, which can be estimated as 2le
d for equiaxed grain, 2lc

d for
columnar dendrite; y2 is the inter-grain spacing, which can be estimated as (λ1 − dc) for columnar
growth zone and ( 3

√
6/πne − de) for equiaxed growth zone.

3.3.3. Applications

3.3.3.1. Equiaxed Solidification in Isolated “Representative Spherical Cell”

Equiaxed solidification in an isolated “representative spherical cell” without convection and solid
movement was studied by Rappaz and Thevoz (R-T model) [73,74]. No columnar structure is involved,
and solidification shrinkage is ignored (ρl = ρs = ρe).

Add Equations (23) and (24), with fece ≡ f e
dce

c + f e
s ce

s , we have

∂

∂t
( flcl) +

∂

∂t
( f e

dce
d) +

∂

∂t
( f e

s ce
s) = 0, (30)

Consider the mass and species conservations of the solid dendrite (add Equations (21) and (26)),
and Ce

ds = c∗s ·Me
ds, we get ∂

∂t ( f e
s ce

s) = c∗s
∂ f e

s
∂t . Equations (30) becomes

(c∗s − ce
d) ·

∂ f e
s

∂t
+ f e

d
dce

d
dt
− (ce

env − ce
d) ·

∂ fe

∂t
+ Se

env,D Je
l = 0, (30a)

If a “complete mixing” of interdendritic melt is considered, i.e., ce
d = ce

env = c∗l , the same species
conservation equation as R-T model (Equation (6) in reference [73]) is derived:

(c∗l − c∗s ) ·
∂ f e

s
∂t

= fd
dc∗l
dt

+ Se
env,D Je

l = 0, (30b)

Further assumptions/considerations of R-T model are: (1) thermodynamic equilibrium at

the solid-liquid interface, m ∂c∗l
∂t = ∂T

∂t and c∗s = kc∗l ; (2) a constant heat extraction rate from the

“representative spherical cell”, Qext =
(

L ∂ f e
s

∂t + ρcpm ∂c∗l
∂t

)
/Se

env,D; (3) an idea spherical envelope,

i.e., Φe
env = 1 and Φe

sph = 1, Se
env,D = Se

env,M = 3 f 2/3
g /Rf; (4) the LGK dendritic tip growth

kinetic for the growth velocity of the grain envelope (ve
env) [72,144], so ∂ fe/∂t = ve

env · Se
env,M;

(5) numerically-calculated diffusive flux at the grain envelope: Je
l = −Dl · Se

env,D
∂cl
∂r

∣∣∣
r=Re

; (6) start of
nucleation at the liquidus temperature with an initial globular morphology (αe

s = 1).
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This initial model casts light on many important features of equiaxed solidification. This model
was used to calculate the phase evolution during equiaxed solidification of alloy Al-5.0wt.%Si, as shown
in Figure 13. Recalescence is predicted and explained. This recalescence is not due to nucleation
undercooling, but is associated with the necessary undercooling to drive the equiaxed solidification.
Further explanation to the modeling results of Figure 13 can be read in original papers [73,74].
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Figure 13. Calculated phase evolution during dendritic equiaxed solidification for alloy
Al-5.0wt.%Si [73]. (a) Concentration profiles at 4 different moments; (b) Cooling curve, and volume
fraction of grain envelope ( fe, labelled as fg) with solid line and fraction solid ( f e

s , labelled as fs) with

dashed line. Other conditions for this calculation: Rf = 10−4 m;
.
T = 45 K/s, where

.
T = 3Qext/

(
ρcpRf

)
.

Reproduced from [73], with permission from Elsevier, 2019.

“The extension of the interdendritic melt, where complete mixing is assumed, to the spherical
envelope of the grain (Φe

env = 1 and Φe
sph = 1) is certainly not correct” [73]. The assumption of an

ideal spherical envelope leads to an overestimation of the interdendritic melt region. Underestimation
of the interdendritic melt concentration (c∗l) and the associated tip growth undercooling (to satisfy the
solute balance Equation (30b)). Due to this assumption, it is difficult to quantitatively reproduce some
experimental results, especially for alloys without adding sufficient grain refiner (no inoculation and
large grains). Wu et al. performed a parameter study on the influence of grain morphology parameters [82].
Findings show that the predicted total eutectic is insensitive, but the extra- and inter- dendritic eutectics
are quite sensitive to the assumption of a grain envelope. By defining a suitable shape of the grain
envelope, a satisfied quantitative simulation-experiment agreement can be achieved (Figure 14).
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Figure 14. Numerically calculated rest eutectic in Al-Cu binary alloy series and comparison with
experiment [137]: (a) volume fraction of total eutectic as a function of the alloy composition, (b) extra-
dendritic eutectic, (c) interdendritic eutectic. Reproduced from [82], with permission from Elsevier, 2019.
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3.3.3.2. Columnar-to-Equiaxed Transition

The dendritic solidification model was firstly applied to study the columnar-to-equiaxed transition
by Wang and Beckermann (W-B model) [75–77]. Again, the flow and grain movement were not
considered. Some other assumptions/considerations are as follows.

- As shown in Figure 15, 1D solidification is considered. The columnar tip front was tracked simply
by the isotherm Tcf. This Tcf isotherm separates the calculation domain into different regions:
either equiaxed growth in right side, or columnar growth in the left side. It is assumed that when
the equiaxed crystals are small, they are swallowed by the columnar front and transferred into
columnar structure. Therefore, the whole model system considers only three “thermodynamic
phases”: extra-dendritic melt (l), solid dendrites (s) and interdendritic melt (d). This assumption
leads to the consequence that the growth kinetic laws for columnar and equiaxed dendrite tips
become identical, and can thus be combined into one single set of expressions, while leaving
descriptions of different characteristics of each mode of solidification to supplementary relations
(interfacial area concentrations and diffusion lengths).

- 1D thermal field is calculated; there is no macroscopic solute diffusion.
- Local thermal equilibrium condition exists between liquid and solid phases.
- The densities of all phase are equal and constant.
- The interdendritic melt is complete mixing.
- The dendrite envelope is spherical (Φe

env = 1 and Φe
sph = 1).

- Primarily, to determine the dendrite tip growth velocity, different far field liquid concentrations
for equiaxed and columnar are used: the nominal composition (c0) for the growth of columnar tip
front, but the intrinsic extra-dendritic liquid concentration (cl) for the growth of equiaxed [77].
This part is later modified by considering the same far field liquid concentration (cl) for both
modes of growth; hence, the solute field impingement between the equiaxed growth and the
growth of the primary columnar tip front is considered [117].

- A two time-step scheme is used: a larger time step for thermal field, a small time step for the
grain nucleation and crystal growth kinetics. Note that a similar scheme was also adopted by
Rappaz and Thevoz [73,74] for their solute diffusion model.
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With this model, some important correlations of CET, as established from classical theory and
experiments [112,148–152], were confirmed. For example, (1) the increase of nuclei number density
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promote remarkably the CET; (2) a large heat extraction from the chill mold favors the formation of
columnar region; (3) the length of the columnar region increases with decreasing the nominal alloy
composition; (4) lower pouring temperature (superheat) favors the formation of an equiaxed zone.
A quantitative comparison of the numerically predicted CET position with some experiments was
made [77,151,152]. The results rendered strong agreement, given reasonable nucleation parameters.

Drawbacks of the early study include (1) the treatment of the grain envelope as ideal sphere,
although the original authors have outlined the possibility of consideration of non-spherical grain
envelope [75]; and (2) exclusion of the effect of flow and grain movement. Further studies on
CET with the five-phase mixed columnar-equiaxed dendritic solidification model (Section 3.3.2)
by including non-spherical grain envelopes and/or flow/grain transport phenomena can be found in
the references [85,153].

3.3.3.3. Modeling As-Cast Structure

The ultimate goal of multiphase dendritic solidification model is to calculate an as-cast structure
with the convection and grain movement. The five-phase mixed columnar-equiaxed solidification
model [84,85], as described in Section 3.3.2, was used to simulate a laboratory casting [87,88,154,155].
The solidification of an Al-4.0wt.%Cu ingot (75 mm diameter× 135 mm height) in a graphite mold was
calculated in 2D axis symmetry. Some important modeling parameters are as follows: morphological
parameters Φe

env = 0.48, Φe
sph = 0.4, Φc

env = 0.8, Φc
circ = 0.5; equiaxed nucleation parameters [93]:

nmax = 1.48 × 1011 m−3, ∆Tσ = 28.84 K, ∆TN = 10.17 K; dendrite arm spaces: λ1 = 500 µm,
λ2 = 100 µm; casting temperature is 1073 K (superheat 150 K).

The equiaxed phase (hydrodynamic) volume fraction and its velocity ( fe,
⇀
u e) are tracked,

as shown in Figure 16. The advancement of the columnar primary dendrite tip front (c-front) resembles
the growth of the columnar structure region. The temperature development within the ingot is
indicated by the liquidus isotherm (922 K), as shown in Figure 16a–c. The melt between the liquidus
and the c-front is undercooled. It seems that the superheat of the entire ingot is released in less than
100 s. Growth of e- and c-phases starts to compete at the bottom of the mold. Equiaxed sedimentation
and induced melt flow are highly effective during entire solidification process. At very beginning (70 s,
Figure 16a), there is only thermal buoyancy flow. The liquid close to the side wall sinks while that
at the ingot center rises. Further cooling (85 s) increases both fe and fc at the wall. The downward
liquid stream along the side wall brings the solid crystals towards the mold bottom. The larger
crystals settle at the bottom, whereas the smaller ones are carried up by the liquid due to drag force.
The columnar zone extends progressively, especially at the bottom corner region. The advancing c-front
“captures” the equiaxed crystals, and the captured equiaxed phase remains in the columnar mushy
zone. After 103 s, the columnar structure reached the top, while equiaxed crystals are showering in
the bulk. This process causes stacking of equiaxed solid ahead of the growing c-front at the bottom.
Further growth of equiaxed crystals and their sedimentation increase fe ahead of the c-front in the
ingot bottom region, leading to the columnar-to-equiaxed transition (CET) by the mechanism of “hard
blocking”. It seems that no equiaxed crystals nucleate at the ingot top any more (Figure 16e–h) in the
late stage. Nevertheless, c-front continues to advance and converges towards the centerline at the
ingot top.

The simulation is compared with the experiment (Figure 17). The numerically predicted phase
distribution agrees to some extent with the experiment: (i) the upper ingot half is fully columnar, (ii) the
center region of lower half is primarily equiaxed, (iii) the upper part of the equiaxed region in the ingot
center is extended upward (iv) a mixed columnar/equiaxed structure is found in the peripherals of
the lower ingot half, and (v) the mixed zone close to the mold wall is extended upward. The measured
and predicted macrosegregation patterns show some similarity: (i) the measured concentration, cmix,
falls in a range between 3.67–4.41 wt.% Cu compared to a predicted range of 3.739–4.392 wt.% Cu; (ii)
some negative macrosegregation is found in the upper region of the ingot, (iii) the equiaxed region
in the ingot core exhibits severe negative macrosegregation, (iv) the mixed columnar-equiaxed zone



Metals 2019, 9, 229 30 of 43

at the top boundary of the CET line exhibits positive macrosegregation, (v) the bottom boundary
of CET contains dispersed regions of positive macrosegregation, (vi) the mixed columnar-equiaxed
structure between CET line and mold wall is positively segregated, and (vii) several discrete locations
of positive-negative macrosegregation exist in the upper part of the ingot.
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Figure 16. Solidification sequence of an Al-4.0 wt.%Cu laboratory ingot: (a–h) the contour of fe at
different times with

⇀
u e (mm/s) and columnar tip front (c-front) positions superimposed; (i) final

as-cast structure ( fe and fc contours and CET). The line marked as c-front indicates the position of
columnar primary dendrite tips or the position of CET when it is blocked by the equiaxed crystals.
Note that each figure is color-scaled individually.
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half) an Al-4.0 wt.%Cu laboratory ingot: (a) macrostructure and (b) macrosegregation. The numerical
result of the as-cast structure is shown by grey scale of fc together with a CET line, inside of which pure
equiaxed structure with the grain number density of 9 × 108 m−3 is obtained; the numerical result of
macrosegregation is presented with the grey scale of the mixture concentration cmix.
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It is fundamental to state one important point: the origin of equiaxed crystals plays a key role in
this kind of casting. Previous simulations (Figures 16 and 17) have ignored mold filling. The origin
of the equiaxed crystal is modeled as heterogeneous nucleation during solidification. Nevertheless,
a good simulation-experiment agreement is obtained, because a very large superheat (very high
pouring temperature, 1073 K) is applied. When the casting is poured at a low superheat (pouring
temperature, 973 K), the as-cast structure cannot be ‘reproduced’ numerically without considering the
‘premature solidification’ during mold filling [86,154]. This so-called premature solidification includes
(i) a large amount of equiaxed nuclei originated during mold filling, and thus, (ii) an amount of solid
that has formed during mold filling. A recent study [109] has confirmed the so-called ‘big bang’ theory
of crystal origin, as proposed by Chalmers [155]. It posits that large amounts of crystals originate from
the undercooled melt at the mold wall during pouring, and those crystals survive the low superheat,
serving as nuclei for further growth during the subsequent solidification. A simulation by including
the premature solidification during mold filling can successfully “reproduce” the experiment of a low
pouring temperature as well [109].

4. Other Activities and Future Aspects

Some further issues of volume-averaged modeling of solidification, which were not presented in
the previous examples, are briefly discussed below.

- Consideration of multi-component alloys. The volume averaging approach provides flexibility
for handling the diffusion-governed crystal growth kinetics, which is fully coupled with
thermodynamics, as described by Equations (3), (11), (17). This coupling is easily realized
for binary alloys, but it needs a further modeling step for handling multicomponent alloys, as the
solidification path (i.e., the dependency of phase evolution on the local thermal or concentration
condition) is a priori unknown. Previously, a predefined solidification path to handle the
ternary [156,157] or multicomponent alloy systems has been implemented [158–160], i.e., the
fs − T or c∗i − T functions are given or pre-calculated from level rule, Gulliver-Scheil or some
thermodynamic models. The drawback is that the ignorance of the effect of diffusion-governed
crystal growth kinetics on the solidification path would exclude its application for some
alloys whose solidification path is dependent on the diffusion kinetics. Therefore, the direct
incorporation of the thermodynamics with the diffusion-governed growth kinetics, i.e., coupling
the microsegregation with macrosegregation calculation, is proposed by many authors [161–166].
Application of this new approach for studying the solidification of Fe-C-Mn ternary alloy [70,71]
has shown the significant role of the diffusion-governed growth kinetics in the calculation of the
solidification path, which in turn influences the subsequence formation of macrosegregation.

- Fragmentation vs. nucleation. The early volume-averaged solidification models have considered
the origin of the equiaxed grains as a continuous undercooling-dependent heterogeneous
nucleation [2,55,56] or a simultaneous nucleation event [76,77,91], although more and more
evidences of laboratory experiments [167–172] and industry practices [173] have confirmed the
origin of equiaxed crystals by fragmentation. Hence, it becomes clearer that the solute-driven
remelting of the secondary or high-order of dendrite arms is the dominant mechanism for
fragmentation; and the melt flow plays an important role in the formation of fragments: (i) the
flow influences the transport of the fragments and (ii) it promotes or retards the remelting of
the dendrite stems through solute transportation in the interdendritic mushy zone. Therefore,
Campanella et al. [174], based on Flemings’ theory for the local remelting of mushy zone [175],
derived an onset criterion for remelting-induced fragmentation. Unfortunately, this criterion
cannot provide further quantitative information about the production rate of the number density
of fragments and their initial size. Lesoult reported a very valuable experimental study for steel
based on a hypothesis that stirring of molten steel ahead of the columnar solidification front
would result in seeding of the liquid with dendritic fragments [173]. Presumably, those fragments
were eroded from the columnar tip front. He derived from experimental data that the fragment
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flux, quantified by the number of crystals, eroded per unit of time and area of the columnar
solidification front (cm−2·s−1), correlated with the tangential velocity of the liquid along the
solidification front. This concept was later implemented into a volume-averaged solidification
model by Leriche et al. to calculate the fragmentation during a mixed columnar-equiaxed
solidification of steel [140]. As the size and shape of the newly eroded fragments were not
available, they were assumed to be spheres with diameter of 1 µm. Inspired by this work [140]
and the work of Campanella et al. [174], a local remelting-based formulation for the fragmentation
was suggested and implemented in a three-phase mixed columnar-equiaxed solidification model
by the current authors [133], and it is applied to calculate the as-cast structure of a Sn-10 wt.%
Pb benchmark, where the equiaxed crystals come only from crystal fragmentation [176,177].
The calculation results were verified by the benchmark experiments [178,179].

- Multiphase hydrodynamics. Knowledge of multiphase hydrodynamics came mostly from the
field of CFD, which were gradually introduced into the solidification research. Studying the
hydrodynamic interaction between the melt flow and growing crystals or a developing mushy
zone, although in its infant stage, has made significant progress. For example, there have been
attempts to couple the experimental and numerical methods to determine the permeability
of mushy zone. By performing direct flow calculation through the 3D dendrite network,
reconstructed from series scanning of metallography on postmortem analysis of the as-cast
structure [180,181] or high energy X-ray microtomography of solidifying dendrites [182–184] or
phase field simulations [119], the permeability of the mushy zone can be derived. Very recent
studies based on this method have shown that the detailed structure of the mushy zone, such
as the intermetallic precipitates, influences the permeability significantly [185,186]. Another
interesting study was recently made on the packing behavior of settling equiaxed dendrites [187].
A so-called packing limit (volume fraction at packing point), usually taking the value (0.637) for
random close packing of equal spheres, is often used to calculate the packing equiaxed grain
(characterized by the shape of grain envelope). It is found that the real value (0.2 ~ 0.6) during
solidification of technical alloys can be much smaller than that value of ideal spheres. It is
highly dependent on the grain morphology (shape factor) and the hydrodynamic conditions
(Stokes number, or settling velocity). Additionally, to model the packing behavior of equiaxed
crystals by the volume averaging approach, a special numerical scheme would be necessary to
implement [188,189]. In addition to defining the packing limit, the effect of the moving direction
of the crystals, either advent towards the rigid solid (already packed) region or away from it, must
be taken into account as well. As the conventional volume average method does not distinguish
the above effect, any crystal/crystals being brought into a volume element of the packing front
(the grain volume fraction at this volume element just reaches the packing limit) are considered
to be immediately “captured” by the packing front. This immediate capturing might not occur in
the scenario when the flow or the motion of crystals is outward the packing front.

- Incorporation of thermo-mechanics. In classical volume-averaged solidification models, the solid phases
are usually treated as rigid objects, either stationary such as columnar structure and rigidly-packed
crystals, or movable such as suspended equiaxed crystals. The crystals or dendrite network
of the mushy zone is considered as non-deformable. Most solidification processes, however,
are subject to mechanical deformation, which comes either from the imposed deformation such as
the shell bulging between supporting rolls during continuous casting [58–61,190] or passively from
the thermo-mechanical deformation (solidification shrinkage or thermal expansion/shrinkage
of solidified region leads to deformation). The first volume-averaged solidification model
incorporating thermo-mechanical deformation was introduced by Bellet et al. [191,192]. The solid
phase is treated as a continuous solid skeleton, which is deformable and in strong interaction with
the interdendritic flow. The deforming dendritic skeleton in turn influences the interdendritic
flow, as governed by Darcy’s law. This model targets the calculation of deformation-induced
macrosegregation. Unfortunately, the pioneer model of Bellet et al. was applied only within
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a narrow range, close to the end solidification, that is to say for the cases where the lowest
solid volume fraction in the calculation domain must exceed the coherent point (solid volume
fraction of 0.6–0.7). This work was recently extended by Ludwig et al. to cover the entire
range of solidification from pure liquid melt to complete solidification [193,194]. Note that some
other thermal mechanical models (mostly finite element based) were used to analyze the surface
cracks [195–197], hot tearing [198–200] and other related phenomena of different castings. In those
models, however, the nature of multiphase flow during solidification is ignored or simplified;
hence, the formation of structural and compositional heterogeneities (mixed columnar-equiaxed
structure, macrosegregation, porosity) cannot be accounted. Further discussions on those models
can be read elsewhere [201].

Future research should pay more attention to following aspects:

- Enhancement of model accuracy. Pioneer work proposing the volume-averaged model is often
exploratory, and the modeling results are qualitative. The aim of developing such a model is,
however, to target at the engineering processes at the macroscopic scale. The modeling results
must meet the accuracy criterion of engineering applications. On the one hand, some model
assumptions should be looser, so that the model can represent the reality as closely as possible.
On the other hand, plenty of closure laws need to be further refined. The aforementioned
studies, such as on the hydrodynamic interactions between fluid and solid phases during
solidification [181–190], are to be reinforced through rigorous scientific work.

- Dedicated laboratory benchmark experiments for model evaluation. Comparison of the modeling results
with the engineering castings, as shown in Figures 8–10 and Figure 17, is helpful, but model
validation against dedicated laboratory benchmark experiments [178,179] is more desirable.
The reason is that the influencing factors for the as-cast structure of engineering castings are too
complex. It is extremely difficult to correlate the as-modeled solidification result of an engineering
casting to each individual model assumption, closure law or parameter. ‘Curve-fitting’ of the
modeling result with the experiment could become a pitfall. Due to the complexity of engineering
casting process, if one calculated quantity of the solidification process, e.g., a cooling curve or
a segregation profile, which agrees coincidently with the experiment, it does not mean that the
numerical model is fully verified.

- Modeling and process parameters, and materials properties. With the enhanced modeling capacity
through micro-macro coupling, more input data will be required. In additional to the classical
mean of thermal physical properties and heat transfer boundary conditions, etc., one needs
physical properties for the solute diffusion and growth kinetics. Furthermore, parameters
describing the origin of crystals (nucleation or fragmentation) are needed as well.

- Turbulence in multiphase flow. As described in Table 2 of Section 2.1, the dispersive flux terms (
⇀
J

d

k)
were not considered in most multiphase solidification models. How significant are these terms in
modeling of solidification, and how should they be treated in the solidification model? Further
studies are needed.

The last point to be discussed about multiphase solidification models is the high calculation cost.
The full 3D calculation of the steel ingot of 36 ton (Figures 8–10) with the four-phase solidification
model took ~4 weeks in parallel on 12 cores (2.9 GHz). One reason is the large tonnage (36 ton) of the
casting and the long solidification time (7.6 h); another reason is the sophisticated, non-linear coupling
of the multiple equation system. 21 transport equations were solved simultaneously. It seems that
this calculation time is too costly with contemporary computer hardware. Following the study of
Voller et al., [8,9], with the projection of Moore’s law, using the volume-averaged models to capture
the average effects of small scale phenomena in larger scale processes will continue to be a key area of
research in computational physics. In comparison to other physics-based solidification models, such
phase field or cellular automata, using the volume-averaged models for engineering castings, is most
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feasible. Maybe this will be the only physics-based solidification model which is applicable to casting
processes at an engineering scale in the foreseeable future.

5. Summary

An introduction of the computational multi-fluid dynamics and volume average technique into
the field of solidification research provides a modeling tool for the solidification processes by bridging
the global multiphase transport phenomena with the solidification thermodynamics and crystal
growth kinetics. The main advantage of volume-averaged modeling method, vs. phase field, cellular
automata or other microstructure-oriented modeling methods, is its computational efficiency and
applicability to casting processes relevance to engineering; without losing its necessary physics-based
background. Thanks to the pioneer work of Beckermann and other researchers [3,4], the framework of
multiphase volume-averaged modeling of solidification has been outlined. In the last two decades,
the following major progress has been made: (i) the development of solidification models which
consider the formation of mixed columnar-equiaxed structure; (ii) further consideration of moving
equiaxed crystals and crystal dendritic morphology were refined; (iii) application of the models to
analyze the formation mechanisms of macrosegregation, as-cast structure, shrinkage cavity/porosity.

This review has presented several modeling examples. It is clearly demonstrated that the
volume-averaged models are not only used to perform exploratory simulations, showing the
probability for some solidification phenomena (achieving/strengthening solidification knowledge),
but are used to calculate practical castings (e.g., Figures 9, 10 and 17) and the modeling results agree
quantitatively with the as-cast results. In the foreseeable future, these applications will become more
prospective with increasing computational capacity.

The following research activities in the area of the volume-averaged modeling should continue:
model extension for multi-component alloy system, consideration of fragmentation as a new source of
equiaxed crystals, improvement of the closure laws (multiphase hydrodynamics), and incorporation
of the effect of thermo-mechanics. Further research aspects are: designing/performing dedicated
laboratory benchmark experiments for model evaluation; providing more reliable modeling, processing
parameters and materials properties; including turbulence models in the multiphase flow.
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