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A B S T R A C T

The growth of faceted crystals occurs often in nature and industry, involving often the presence of flow. The
growth of faceted crystals is the result of interface kinetics and diffusion phenomenon. The present paper pre-
sents a front tracking interface model based on a cellular automaton approach for the simulation of faceted
crystal growth. The current model takes into account the interface kinetics and solute transport by diffusion and
convection. The propagation of kinks is modelled by differentiating two growth velocities, one normal and one
lateral at each face. The positions of the crystal corners are shifted according to growth of adjacent faces. The
hydrodynamics is computed with a two-phase model using a penalty method to model the presence of growing
obstacles (the crystals). This model was applied in 2D to the growth of hexagonal Fe2Al5 crystals, so called top
dross particles, in a saturated liquid at constant temperature. Qualitative comparison was made between si-
mulation and experimental observation of crystal shape and size. The growth rate was found to be strongly
influenced by the flow hydrodynamic induced kinetics.

1. Introduction

Computational models for solidification take into account two
physical phenomena: 1) the attachment kinetics that describes the
molecular dynamics at the solid interface, and 2) the particles transport
via diffusion towards the growing interface. Some diffusion-limited
models are explicitly tracking the interface in a Lagrangian way, they
are known as sharp front-tracking models. The liquid-solid interface is
localised only inside one volume element. Other diffusion-limited
models such as the phase-field models smooth the interface without
explicitly tracking it. Hereby, the solid fraction varies from zero to one
over a distance which is typically 4–6 vol elements. In this case a purely
Eulerian approach is used to describe the evolution of the solidification
field.

Debierre et al. [1] made a first step to extend the phase field ap-
proach to model faceted materials for a discrete set of orientations.
They focused on capillary effects and neglected the kinetic under-
cooling of the interface. Their approach consisted in rounding the sharp
cusps of the solid-liquid interface free energy plots for equilibrium and
non-equilibrium faceted growth. They established a quantitative com-
parison between phase-field models and sharp interface results

assuming a linear relationship between velocity and undercooling.
However the facet’s kinetic and furthermore the nonlinear relationship
between velocity and undercooling, remain an important step to be
included in the phase-field concept.

Taylor and Cahn [2] allowed the phenomenological phase field
parameters (such as the gradient energy coefficient and the mobility
coefficient for temporal relaxation) to depend on the direction of the
gradient of the phase field parameter. In many continuum theories of
interface dynamics the interface between the two phases is regarded as
being diffuse rather than sharp, with a nonzero thickness over which
properties vary smoothly from one set of bulk values to another. Diffuse
interface theories permit to use a single equation (or a single system of
equations) for the interface and both phases. In this case the dis-
continuities associated with sharp interface, requiring the solution of
separate systems of equations for each phase in a moving boundary
problem, can be avoided. Phase field methods add one (or more) order
parameters, representing some structural changes and smoothing the
transitions in all the other variables. They considered that the interface
moves by weighted mean curvature and delivered equations for
tracking the edges and corners.

Aside of phase field methods, sharp interface approaches use
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cellular automata technique. It is employed to produce realistic looking
crystals, especially in the field of snow crystals growth modelling.

Roosen and Taylor [3] presented a model for crystal growth where
the interface between liquid and solid is sharp and explicitly tracked.
They assumed that the crystal is a polygon having a limited number of
normal growth directions. It is not required that curvature is calculated
explicitly, only the measure of the lengths of edges is needed. Since the
possible normal directions are known, the comparison between edges
with parallel normal is enough to know if two parts of the crystal have
intersected or not. Computation time is smaller than in phase field
models which require many computational volume elements within the
“thickness” of the interface. A related limitation is that the method can
be used only for crystalline surface energies. Until now a linear relation
between the velocity of the edges and the driving force was considered
but also new exponential formulae should be simple to model using the
crystalline computational model.

Libbrecht, 2008 [4] simulated diffusion limited growth of faceted
crystals using Local Cellular Automata (LCA). This technique was ap-
plied to the growth of thin plate-like crystals. The snow crystal is the
most studied example of strong anisotropic growth. The discussion was
focused on the transition from concave to convex growth as the su-
persaturation increases. The LCA method was found to be able to si-
mulate the lateral propagation of microsteps on a flat surface, which is a
key element in faceted growth.

Barrett et al. [5] simulated 2D and 3D snow crystal growth with a
new continuum model using a finite-element approximation for the
numerical results. They considered a linear relationship between the tip
velocity and the supersaturation. The variation of the condensation
coefficient was not sufficient for the faceted growth but produce either
plate-like growth or columnar growth. The large effect of the surface
energy anisotropy, on the faceted crystal growth was put in evidence.
Because many parameters in models for crystal growth are not known,
their validation must be done in combination with experimental results.

Libbrecht [6] aimed to develop a basic numerical model to in-
vestigate the diffusion-limited growth of ice crystals from water vapour.
The model incorporates the cellular automata (CA) technique, pre-
sented by Gravner and Griffeath, [7] but uses a more physically realistic
treatment of the surface attachment kinetics and of the Gibbs-Thomson
effect. The CA numerical model was applied to a 2D cylindrically
symmetric crystal growth of relatively simple growth morphologies.
Quantitative results were produced, using known diffusion rate, initial
sizes and morphologies, for comparison with laboratory crystal mea-
surements. In addition to the morphology the growth rates of the
crystal, were nicely reproduced by the model crystal.

Reuther and Rettenmayr [8] presented a review of perspectives of
cellular automata for the simulation of dendritic solidification. This
method was extensively used for dendritic solidification and less for
facetted crystals growth. The problem of the grid anisotropy superposes
the strong physical anisotropy encountered in crystals facets and
therefore impedes the simulation of this microstructure. The main ad-
vantage of the CA method is the lower computational effort.

Most of the crystal growth processes involve fluid flows, such as
flows in the melt, solution or vapour. Modelling of faceted growth with
flow is mainly found in the field of Czochralski single crystal growth,
which is the most important method of growing Silicon crystals for the
electronic industry. The melt flow inside the crucible during the
Czochralski growth is complicated, thus represents the most difficult
part of the modelling. Interactions between buoyancy, surface tension,
centrifugal and Lorentz forces were considered in the models of Chen
et al. [9]. Initially only a thermo-capillary flow model was considered,
later a turbulent flow model was included and last also a magneto-
hydro-dynamic flow model was applied.

V.V. Kalaev et al. [10] made an attempt to develop an universal
numerical model for the optimisation of the Czochralski crystal growth.
Global heat transfer (heat transfer in solid parts, and radiative heat
exchange between the solid and the melt), inert gas flow and turbulent

melt convection, were considered together with a self-consistent com-
putation of the melt-crystal interface, using an unstructured grid. Zaidat
team also has developed a global 3D numerical model for the Kyr-
opoulos crystal growth of silicon single crystal [11]. They took into
consideration the flow velocity in the furnace, the multiple aspects of
the heat transfer (conduction, radiation and convection) and the soli-
dification from Si melt as accounted in the liquid fraction model of
Fluent, based on the enthalpy-porosity method. The numerical model
was found to be useful to give the operating conditions for a symmetric
growth. Their approach (enthalpy-porosity method) assume thermo-
dynamic equilibrium, therefore it cannot model any faceted crystal
growth.

Another example of semiconductor material is the GaN crystal,
growing in the presence of ammonia water solution (amonothermal
growth) under high temperature (200 °C to 500 °C) and pressure (1 to
4 kbar). Chen et al. [12] modelled the 3D flow during the ammo-
nothermal growth using fluid dynamics, thermodynamics and heat
transfer and studied the effect of particle size on flow pattern and
temperature distribution in the autoclave. A finite volume method was
used to solve the governing equations.

Silicon carbide is produced by chemical vapour deposition (CVD) or
physical vapour transport (PVT) techniques and represents the third
generation of semiconductors used in electronics. In this physical va-
pour transport growth mechanism, the Stefan flow model based on a
flow-kinetics theory was proposed. Chen et al. [13,14] proposed a 1D
and a 2D flow kinetics theory for the vapour growth and calculated the
concentration distribution and flow field inside the crucible together
with the grow rate. Many other growth models were developed, con-
sidering electromagnetic field, heating via induction, radiation or
conduction heat transfer and growth kinetics. Hofmann et al. [15,16]
simulated the flow field in a SiC growth system caused by buoyancy
effect, using a finite volume scheme called FASTEST. Pons et al. [17,18]
developed a finite element code to predict the electromagnetic field and
temperature distribution during the SiC growth.

Demange et al. [19] proposed a modified phase field model able to
reproduce complex dynamics of snowflake growth. Two growth re-
gimes were observed. The growth during the first regime was lower
than the diffusion. In the second regime the growth follows a linear
function. The transition between the two regimes was found to corre-
spond for the horizontal growth to the full faceting of the prismatic face
which causes growth to decelerate and for the vertical growth to the
formation of a vicinal surface at the needle tip which accelerates the
growth. Continuum fluid dynamics could be easily introduced in the
model to simulate the air flow around the snowflake.

The growth rate of a triangular shaped crystal was predicted using a
hydrodynamic model where the diffusion was taken into account for
many flow velocities [20]. Different crystals facets, chosen arbitrarily
from 90° to −18° with respect to the flow direction were considered.
The main parameter that influences the final crystal shape is the angle
between the face and the flow direction. The growth rate decreases
downstream along the facets creating an elongated shaped crystal,
slightly deviated with respect to the flow direction. The model was
applied to a natural calcite crystal and in 2D the results are in good
agreement with the observed shapes [21]. The crystal facets with the
lowest angle with respect to the flow direction have the highest growth
rate and the facets with the largest angle with respect to the flow di-
rection have the lowest growth rate.

Three-dimensional phase-field simulations of a silicon crystal in
isothermal melt were performed [22]. Both anisotropies of the solid-
liquid surface energy and of the kinetic attachments were considered, in
three different cases, but only when the two effects were considered
good agreement was found with experimental results. This study is
based on previous experimental, numerical and analytical results
[1,23–26].

When the anisotropy of the interface does not play a too important
role, both sharp interface tracking and phase field methods give
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excellent predictions for dendritic solidification. In opposite, properties
of each face can be very different from the neighbouring faces. Thus
large jumps in thermodynamics, kinetics and surfaces energy exist at
the corners of a crystal, which could lead to strong modelling and
computational difficulties, especially for models that smooth the in-
terfaces (phase field).

Based on these issues we have chosen to further develop a sharp
interface tracking model to tackle the problem of faceted growth under
hydrodynamic condition. The main differences with models described
in literature are:

(1) Interface kinetics, together with solute transport by diffusion and
convection are fully taken into account.

(2) Propagation of kinks is expressively modelled by differentiating
normal and lateral growth velocities at each faces.

(3) Positions of the corners are shifted according to growth of adjacent
faces.

(4) Hydrodynamic is computed with a two-phase model using a penalty
method to model the presence of growing obstacles (crystals).

The model is applied to the growth of an isothermal hexagonal
crystal in a supersaturated liquid zinc alloy. Modelling of the crystals
formation at the macroscopic scale in a liquid zinc bath, was made by
Reiss et al. [27].

To illustrate the influence of the flow direction and magnitude, the
crystal is chosen to be isotropic, i.e. the interface kinetics is assumed the
same for all crystallographic directions. It will be shown that the pre-
sence of the flow can lead to di-symmetrisation of the crystal shape, just
as difference in interface kinetics between faces can do.

2. Growth model

2.1. Interface kinetics

The theory of solidification proposes different interfacial kinetics
depending on different growing mechanisms at the interface. The
dendritic structures have a linear interfacial kinetic growth law, where
the faceted crystals show a quadratic or an exponential kinetic growth
law.

The kinetic growth rate can be expressed using the interface un-
dercooling Ti or the interface supersaturation Ck . The interface su-
persaturation can be defined as the difference between the liquid con-
centration at the interface Cl

i and the equilibrium liquid concentration
Cl

eq:

=C C CK l
i

l
eq (1)

The different kinetic growth laws can therefore be written as fol-
lows:

=V K Cn k1 (2)

for dendritic growth,

=V K C( )n k2
2 (3)

for spiral growth around an unsaturable defect (screw dislocations,
twins),

=V K K
C

expn
k

3
4

(4)

for surface nucleation and growth layer by layer.
In the Eqs. (2)–(4), K1 to K3 are kinetic coefficients which have

different values depending on the crystallographic directions and the
type of growth and K4 is an energy factor. Vn represents the growth
velocity perpendicular to the interface (normal velocity).

Besides Vn, for faceted crystal growth, we should also consider a
lateral velocity Vlat parallel to the surface, at which a kink is filled by
atoms. To efficiently build a facet this lateral growth must be much
faster than the normal growth. For rough interfaces with large number
of kinks (non-faceted growth), the laws governing the lateral growth
are represented by the action of a macroscopic curvature undercooling.
The numerical resolution of the curvature requires a sufficiently small
volume element. However, for faceted growth with limited number of
kinks, whose thickness is in the order of atoms, the macroscopic ap-
proach using interfacial tension results in an enormous and probably
unphysical curvature undercooling.

The curvature undercooling is a macroscopic concept. If we apply it
to the curvature of a kink (few Angstroms) we obtain 100 to 1000 K
undercooling. The kinetics for a kink is indeed much faster than for a
plane interface, its interface concentration (see Eq. (6)) can be con-
sidered to be much closer to thermodynamic equilibrium than that of
the planar facet. We propose here to mimic the behavior of the kink
propagation on the macroscopic mesh. Whenever a numerical “kink”
appears on the surface of a facet (Fig. 1), a lateral growth law Vlat is
applied.

2.2. Solidification growth model

Let us consider one facet of a crystal, the solute balance equation at
the interface can be written as follows:

Fig. 1. Different interface stages during faceted growth. Lateral propagation of a numerical kink.
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=V C k D C
n

D C
n

(1 )n lat l
i

s
s

i

l
l

i

0 (5)

where n is the norm of the solidification interface,Vn lat is the normal or
lateral growth velocity of the interface, Cl

i and Cs
i are the concentrations

of liquid and solid phases at the interface, =k C
C0

s
i

l
i is the partition

coefficient. On the right hand side the first term represents the diffusion
in the solid (withDsthe solute diffusivity in the solid phase, neglected
here). The second term represents the diffusion in the liquid (withDlthe
solute diffusivity in the liquid phase) which is controlled by hydro-
dynamics.

The concentration at the facet interface in the liquid Cl
ican be ex-

pressed as:

= + + +C C
m

T T Qf C1 ( ( , ))l
i

l

eq
K0 0 (6)

where C0 is the initial liquid concentration, Teq is the equilibrium
temperature, T0 is the initial temperature, ml is the liquidus slope given
by the phase diagram, is the Gibbs-Thompson coefficient, Q is the
curvature, f ( , ) is a function depending of the orientation and the
shape of the crystal. The kinetic supersaturation CK at the interface is
calculated according to the physical growth mechanism (here Eq. (3))
and it is only considered for normal growth (Vn) of facets, not for kinks
growth (Vlat), when =C 0K . In other words with Eq. (5) we will cal-
culate either Vn or Vlat. The concentration gradient must be calculated
according to the presence of kink: a) for cells with kink V( lat) the con-
centration gradient is calculated assuming equilibrium at the interface
( =C 0K ); b) for cells without kink (V )n the concentration gradient is
calculated including the kinetic supersaturation =CK

V
K

n
2
.

The lateral velocity results from the cancelation of the interface
kinetics from the interfacial concentration. Real kink velocities are
much faster than this lateral velocity. However in the present in-
vestigation, the lateral velocity was found sufficiently large (compared
to normal velocities) to keep every facets almost perfectly flat.

The curvature can be expressed as a function of the solid fraction
field with the following equation:

=
+

Q
f f f f f f f

f f
2 ( ) ( )

[( ) ( ) ]
x s y s xy s x s yy s y s xx s

x s y s

2 2

2 2 3 2 (7)

The function f ( , ) can have different forms. For a cubic crystal
shape it can be written as follows:

=f ( , ) 1 15 cos(4( )) (8)

=
+

f
f f

arccos
[( ) ( ) ]

x s

x s y s
2 2 1 2 (9)

2.3. Hydrodynamic and transport of solute

The two-phase volume-averaged Navier-Stokes and mass conserva-
tion equations are:

+ = +
+

=

t
f u f u u f P µ f u A

f
f

u

f u

( ) ( ) ( )

and ( ) 0

l l l l l l l l l l l
s

l
l

l l (10)

where fl is the liquid fraction, fs is the solid fraction, l is the liquid
density, P is the static pressure, µl is the liquid viscosity, ul is the liquid
phase velocity and the last term in the first equation represents a
penalty factor to force the flow around the growing crystal. The nu-
merical coefficient A should be adjusted according to the strength of the
incoming flow. The volume-averaged solute conservation equation used
is:

+ =
t

f C f u C f D C C
f
t

( ) ( ) ( )l l l l l l l l l l l s
s

(11)

2.4. CA model and front tracking method

The variation of solid fraction (solidification) in a cell of index i, is
related to the neighbouring cells j:

= +
f
t

V V t max d dmin( , ) ( , 0)s
i

n i lat i
j

j i
(12)

where i is the segment of the interface, t the time step, and di, dj the
thickness (normal to the interface) of the solidified part of the cell (see
Fig. 1).

The solidification model simulates directly the envelope of the
crystal with a cellular automaton model. The envelope of the crystal is
tracked in a Lagrangian way. With this method, all crystallographic
directions of crystal growth can be correctly modelled, for any Eulerian
mesh orientation. The envelope of the crystal was separated in corners
and facets. Only cells with a solid faction 0 < fs < 1 contain envelope
tracers. Facets (and associated kinks) grow according to local thermo-
dynamics and kinetics, while corners are simply advected according to
adjacent facets. Fig. 2 shows a schematic representation of the growth
of an initial crystal (blue hexagon, Fig. 2a) placed at the desired posi-
tion on the grid. Fig. 2b represents a zoom of the left corner of the

a)             b)    c) 

Fig. 2. Schematic representation of a growing crystal as considered in the numerical model, with corner particles (red), facet particles (green). The black arrows
represent the resultant growth velocity vectors. (a) initial crystal; (b) constant growth; (c) asymmetric growth: left facet doesn’t grow, top facet has the fastest growth
and the right facet has a slower growth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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hexagon (see black square in Fig. 2a). In Fig. 2b the preferred growing
directions of the crystal are represented by the facets of the hexagon
(green tracers). The black arrows represent the resultant growth vec-
tors, which are equal to the sum of normal and the lateral vectors. The
corners are tracked via the red tracers. The velocity vector of tracers
should advect the interface so that the change of volume fraction in-
cludes both normal and lateral growth velocities:

=V
f
t
s

i (13)

Two special treatments are applied at cells containing corner tra-
cers. First, advection velocity at corner points is taken as the sum of the
advection vectors of the side facets adjacent to it, in second, the source
term f

t
s is geometrically calculated according to the new corner posi-

tion inside the cell.
During the growth a corner moves from one cell to another. To keep

the necessary geometrical resolution of the crystal shape, two new facet
tracers are created whenever a corner enters a new cell. The advection
direction of these facets make a specific angle with the corners direc-
tion, this angle is defined by the crystalline orientation (for example π/
6 for a hexagon).

If the advection vectors of the corner tracers (red particles) and of
the facet tracers (green particles) are constant, the crystal formed will
keep its initial shape and aspect ratio (Fig. 2b). However if the growth
vectors on one side are faster than those of the corners, the corners are
shifted to that side of the facet (Fig. 2c). Depending on the local con-
ditions, each facet can have its own growth velocity, some facets can be
faster than others. If the normal vector velocity in one particle is much
faster than in the neighbouring particles then actually the growth will
take place laterally and not anymore normal to the facet surface but
keeping the facet flat.

3. Results

The facetted crystal simulated in the present paper is the Al2Fe5
phase. A microscopic picture of the Al2Fe5 phase is given in Fig. 3. It is
encountered in the galvanizing industry and these crystals are usually
known as top dross particles. Fig. 4 presents the phase diagram at the
rich Zn corner, where Fe2Al5 phase appears. In Table 1 relevant phy-
sical properties and numerical parameters are listed.

For the dross particles no data are available concerning the kinetic
growth laws. For sake of simplification a power 2 (quadratic) relation
(Eq. (3)), was used for the simulations shown in the present paper,
which has the advantage to include only one unknown (the coefficient
K2) compared to the exponential law (Eq. (4)). From the rare available
experimental data the K2 value shown in Table 1, was extracted. For the

most studied faceted crystal growth, the Si crystal, recent experiments
suggest more a quadratic than a linear kinetic law [29], altough linear
kinetics cannot be absolutely excluded, especially for early growth
shapes.

The exact value of the Gibbs –Thomson coefficient is unknown,
here a relatively large value has been chosen in order to help the in-
terface to remain flat. Naturally the kinetic coefficient K2 and Gibbs
–Thomson coefficient can be different for each facet. This anisotropy
will naturally lead at faster growth of some facets (preferred growth
direction) and therefore to their disappearance. The dross particle si-
mulated here has an orthorhombic crystallographic orientation.
However the microscopic observations (Fig. 3) show a hexagonal shape
(in 2D) due to the above mentioned anisotropy, therefore the starting
crystal in our simulations has a hexagonal shape. The same values of K2
and parameters are used for all facets, therefore if the crystal di-
symmetrizes it will only be the consequence of the kinetics induced by
the presence of the flow.

The 2D simulations start with a crystal of 1 µm size, in a square
domain of 300*300 µm. The crystal is placed exactly in the middle of
the domain, aligned with respect to the melt flow direction.

Several situations were simulated: (i) without flow, the growth will
be controlled only by diffusion and kinetics; (ii) flow is considered with
relative high melt velocities from 7.2 cm/s to 1.44 m/s. First situation
reproduces the conditions of faceted crystal growth on a stationary
support and the second situation approaches the conditions of a faceted
crystal growth on a moving support.

Fig. 3. Experimentally observed dross particle (Fe2Al5 phase). In a 2D cut
crystals have a hexagonal shape.

Fig. 4. Phase diagram at the rich Zn corner, at 460 °C, calculated with
Mcdermid equation [28] (L stands for liquid phase). The two straight red dotted
lines represent the initial Al (0.2 wt%) and Fe (0.02115 wt%) concentrations
used in the simulation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 1
Physical properties of liquid Zink and numerical parameters.

Physical properties and numerical parameters Values

l 6600 kg/m3
cp 512 J/kg·K
κ 60 W/m·K
µl 0.0034 kg/m·s
Dl 1.75·10−9m2/s (450 °C)
K2 1.14·10−8 s−1

5.5·10−7 (m·K)
A 106

ε 10−6
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3.1. Without melt flow

Fig. 5 presents the simulation results of the crystal growth without

melt flow. It can be observed that the diffusion layer is thick and uni-
form around the crystal. The tracks of the corner’s positions are straight
lines. The crystal keeps its symmetric shape during growth, as all facets

Fig. 5. Crystal (dark blue) evolution without flow and the corresponding Fe concentration field in the liquid around the crystal. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

10 s 87 s 

237 s 337 s 

0.011 wt% Fe                                                                                                    0.02 wt% Fe   

Fig. 6. Crystal (dark blue) evolution under 0.072 m/s melt flow and the corresponding Fe concentration field in the liquid around the crystal. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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10 s 87 s 

237 s 337 s 

0.011 wt% Fe                                                                                                    0.02 wt% Fe   

Fig. 7. Crystal (dark blue) evolution under 0.36 m/s melt flow and the corresponding Fe concentration field in the liquid around the crystal. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

10 s 86 s 

236 s 336 s 

0.011 wt% Fe                                                                                                    0.02 wt% Fe   

Fig. 8. Crystal (dark blue) evolution under 0.72 m/s melt flow and the corresponding Fe concentration field in the liquid around the crystal. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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have the same kinetics (Gibbs-Thomson coefficient and interfacial ki-
netic coefficient). This case can be used as reference for the following
cases involving several melt flow intensity.

3.2. With melt flow

The flow magnitude imposed at the left boundary limit was varied
between 0.072 and 1.44 m/s. The crystal’s facets at the left hand side of
the pictures, where the melt flow meets directly the crystal are called
front facets, by opposition of the facets at the right hand side of the
pictures, called back facets. Additionally we define the top and the
bottom facets. Figs. 6–9 present the results of the crystal growth at
different melt flow velocities.

For all cases presented in Figs. 6–9 the diffusion boundary layer is
not similar for the different crystal’s facets. At the front facets the
boundary layer is much thinner than at the other facets. Moreover with
the increase of the melt flow velocity it can be observed that the solute
diffusion boundary layer becomes thinner.

Another important fact is that the traces of the corner’s positions are
not straight lines as in the case of crystal growth without flow. Already
at around 80 s (second pictures in Figs. 6 to 9) it can be observed that
the crystal starts losing its symmetry; the initial centre point is as
“moved to the right”. The upwind part of the crystal grows faster as its
downwind part.

For the last two cases at 0.72 m/s and 1.44 m/s melt flow, starting
with approximately 60 s and respectively 22 s, a back flow was ob-
served, resulting from the occurrence of the so called von Kármán
vortices, (Fig. 8b) and Fig. 9b)). For a flow around a hexagon, the von
Kármán vortices appear at a critical Reynolds (Re) number between 54
and 55 [30]. The dimensionless Re number is calculated as follows:

=Re
UL
µ

l

l

2

(14)

10 s 82 s 

232 s 332 s 

0.011 wt% Fe                                                                                                    0.02 wt% Fe   

Fig. 9. Crystal (dark blue) evolution under 1.44 m/s melt flow and the corresponding Fe concentration field in the liquid around the crystal. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

288 s 
Fig. 10. Melt flow around a growing crystal at 288 s. Velocity magnitude
(colours) and vectors field (arrows).
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e)

point
Change in slopeChange in slope

point

a) b)

d) c)

Fig. 11. Evolution of crystal growth for different flow velocities. (a) Evolution of crystal width (L1); (b) Evolution of crystal height (L2); (c) Evolution of crystal
growth rates in the direction parallel to the melt flow; (d) Evolution of crystal growth rates in the direction perpendicular to the melt flow; (e) Evolution of crystal
growth rates in the direction parallel to the melt flow with the width of the crystal (L1).
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where L2 is the length of the crystal perpendicular to the flow direction
and U is the melt flow velocity.

The corresponding critical Re number value, for the above presented
simulations, turned out to be approximately 53.

Fig. 10 presents the velocity magnitude of the melt flow around the
growing crystal and the corresponding velocity field. The melt flow is
forced to go around the crystal and its intensity becomes stronger once
reaching the top and bottom facets. Vortices can be observed at the top
and bottom facet as well as behind the crystal, where the von Kármán
vortices form.

In Fig. 11a) and b) the evolution of the crystal size in time (L1 is the
measured size of the crystal in the direction parallel with the melt flow
(crystal width) and L2 is the size of the crystal in the direction per-
pendicular to the melt flow (crystal height)) is compared for the dif-
ferent melt flow velocities.

The width of the crystal (L1) for all cases with melt flow increases
faster than the height (L2) of the crystal. This situation is the result of
two facts: (i) the diffusion boundary layer is smaller for the front facets
than for the top and bottom ones, therefore the growth at these facets
(front facets) is faster; (ii) the back flow due to the von Kármán vortices
contributes also to an increase in the growth rate at the back facets.

Furthermore the shape of the crystal is not anymore symmetric, the
back facets of the crystal (right hand side of the picture) are growing
slower than the front facets (left hand side of the picture). This can be
correlated to the boundary diffusion layer, which is much thinner for
the front facets than for the back one, therefore the mass transfer is
faster at the front that at the back of the crystal.

From Fig. 11a) and b) it can be observed that the crystal size in-
creases almost linearly but at around 75 s a change in slope point can be
noticed, which means that the crystal’s size increases slower after this
point. In Fig. 11c), d) and e) the corresponding growth rates are re-
ported. A general trend can be observed for all cases: the growth rate
decreases in time (Fig. 11c), d)) and respectively with the increase of
the crystal size (Fig. 11e)). This can be explained by the growth of a
cylindrical crystal in 2D, which is scaled with the inverse of its size:
v C C( )L i

1
0 , the growth rate decreases with the increase of the

crystal’s size [31].
Additionally comparing Fig. 11c) and d) it can be observed that

larger is the melt flow velocity smaller is the growth rate decrease.
However the decrease of the growth rate in the direction parallel to the
melt flow is slightly smaller than the decrease on the growth rate in the
direction perpendicular to the melt flow for the same melt flow velocity
(Fig. 11c) and d)). The difference between the growth rate in the two
direction (parallel and perpendicular to the melt flow) increases with
the increase of the melt flow velocity (Fig. 11c) and d)).

From Fig. 11c) and d), it can be noticed that for the case of no melt
flow respectively the case of 0.072 m/s melt flow velocity, the crystal
grows with almost similar growth rates in both directions (parallel and
perpendicular to the flow). The case with 0.36 m/s melt flow starts to
present a significant difference between the growth rates in the two
directions parallel and perpendicular to the flow (Fig. 11c) and d)). The
crystal grows faster in the direction parallel to the flow compared to the
direction perpendicular to the flow. For the cases of 0.72 and 1.44 m/s
melt flow velocity the difference between the growth in the two di-
rections (parallel and perpendicular to the flow) becomes even larger
(Fig. 11c) and d)). This can be explained by the influence of the flow,
which will decrease the boundary diffusion layer at the front facets
interface and therefore will increase the growth rate. For the back facets
the von Kármán vortices will transport fresh Zn liquid with higher Fe
concentration from bulk melt and therefore the growth rate is in-
creased.

Furthermore a correlation between the melt flow velocity and the
growth rate can be established, larger is the melt flow velocity, faster is
the growth rate of the crystal. In all the cases the model was able to
keep the facets flat as observed in experiments (Fig. 3).

4. Conclusions

The cellular automaton model employed here was able to simulate
the growth of faceted crystals. One single crystal was simulated using a
quadratic kinetic growth law, in two scenarios, with and without melt
flow. The influence of the flow on the growing crystal and reciprocally
the influence of the growing crystal on the melt flow were put in evi-
dence.

The single crystal without melt flow grows slower with a perfectly
symmetric shape.

Different melt flow velocities were simulated. Crystal was found to
grow faster with the increase of melt flow velocity. The diffusion
boundary layer is reduced in presence of melt flow, therefore the mass
transfer and consequently growth rate is faster in presence of flow.

The flow is forced to contour the growing crystal. At highest melt
flow velocities, the von Kármán vortices appear at the rear of the
crystal.

Furthermore, the growth rate of the faceted crystal was found to
decrease with its size until a plateau is reached.

The current simulations can only offer a qualitative comparison
with the experimental results. More experimental data should be pro-
vided in order to estimate the kinetic interfacial coefficient. Effect of the
orientation of the flow with respect of the crystal should be studied.
Afterwards the current model could be applied to simulate the com-
petition of many crystals growing over a solid surface (so called “build-
up” growth).
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