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Abstract

Based on the generalised ‘Jackson—-Hunt’ model from Donaghey and Tiller for eutectic solidification of binary alloys, a relation between
growth velocity, lamellar spacing and interface undercooling for any binary eutectic phase diagrams and any Peclet number is derived. This
relation is then used to propose a generalised scaling law for eutectic growth, The predictions of this generalised scaling law are discussed
for extremely different eutectic phase diagrams and compared with predictions made by the TMK-model for symmetrical phase diagrams.
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1. Introduction

The most well-known theory for the eutectic solidifica-
tion is the classical work by Jackson and Hunt (JH model)
[1]. Fig. 1 is a schematic diagram of a lamellar eutectic
structure which forms under steady-state directional solid-
ification conditions. To estimate the diffusion field ahead
of such planar eutectic interface solidifying with a constant
growth rate V, Jackson and Hunt suggested a Fourier series
approach of the following form
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Here, C 1s the solute concentration in liquid far from the
interface;! I := 2D/ V the diffusion length; D the diffusion
coefficient in the liquid; Pg := Ag/l. the Peclet number;
and Ag the interlamellar spacing. B; withi =0, ... , co are
constants which have to be determined by further conditions.
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The frame of reference is considered to move at constant
velocity, V, in the z-direction with the planar eutectic front
at z = 0. Eq. (1) fulfils both, the solute conservation dif-
ferential equation and the far field condition. Corresponding
to the general properties of Fourier coefficients Jackson and
Hunt estimated the B, coefficients by multiplying Eq. (1a)
and the two solute flux balances with cos(2imx/Ag) and then
integrating over an interlamellar spacing. They further as-
sume that the differences in liquid and solid compositions at
the o/liquid and the B/liquid interfaces, ACL  and ACy g,
are independent of x and equal to the corresponding thermo-
dynamic equilibrium quantities at the eutectic composition:
ACL, = ACE and ACLp = ACE. As further restriction
they assume Pg < 1.

With the estimated B, coefficients, Jackson and Hunt
determined the average compositions, Cy. o and CL g, in the
liquid at the interface in front of the o phase and 3 phase.
With respect to the average constitutional and capillary
undercoolings they got the following expressions for the
relation between average undercooling at the front, ATg,
interlamellar spacing, Ag and growth velocity, V
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Fig. 1. A schematic diagram of a lamellar structure,
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in which m, and mg are the slopes of the liquidus at Tg (de-
fined so that both are positive), f, and fj the relative phase
amount, I, and I'g the corresponding Gibbs—Thomson-
coefficient, and 6, and 6 the triple point angels. ACg :=
ACE + AC& is the difference of the maximal solubilities of
the o phase and 3 phase at 7.

Using the minimum undercooling principle, Jackson and
Hunt obtained the following relation between ATg, Ag and
14
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Eq. (3) has become the well known scaling law for eutectic
growth.

Already 2 years after the classical work of Jackson and
Hunt, Donaghey and Tiller published a paper where they
could relax two simplifications made in the JH-model
(DT-model) [2]. Donaghey and Tiller applied the cor-
rect approach for ACL . and ACp g, that's ACL . (x) =
(1 =ka)C(x, 0) and ACY, g(x) = (1 —kg)(1 — C(x, 0)), and
so they explicitly allow ACL , and ACy, g to be functions of

x.2 Tn addition, they did not restrict their approach to Pg <«
1 Donaghey and Tiller got the following infinite linear sys-
tem of equations for the determination of the B, coefficients:
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2 With temperature depending distribution coefficient ky and kg have
to be taken at the temperature of the eutectic front T = T — ATg.

withag := fol(l — ko) + fa(1 — kg)and by := (1 — k) fi

(5¢)
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As already mentioned in [3], Donaghey and Tiller had a
small error in their result. Thus, the above given coefficients
of the infinite linear system of equations are slightly differ-
ent from those given in [2]. Note that Eqs. (5a) and (5b)
are symmetrical with respect to a phase exchange, as with
the change of o into 3 and vice versa, C, have to be re-
placed by (1 — C). Donaghey and Tiller did not investigate
whether the infinite system of equations posses finite sub-
systems of dimension m for which the solution converges
with increasing m. They also did not give a general relation
between ATg, V, and Ag.

Trivedi et al. [3] investigated the solution of the infinite
linear system of equations, Egs. (5a)—(5d), for two types of
phase diagrams (TMK-model). These are (1) the metastable
phase diagram is cigar-shaped so that below the eutectic
temperature the solidus and the liquidus are parallel; and
(2) the distribution coefficient is an arbitrary constant, but
ko = kp. They showed that for these two cases a solution
of the system of equations Egs. (5a)-(5d) exists and that a
relation between ATg, V and Ag analogue to Eq. (2a) can be
derived. They found that the scaling law, Eq. (3), formally
still holds, even though for large Peclet numbers Aé V turned
out to be not a constant.

In the present paper, we give the ATg-V-Ag relation for
the general case k, # kg and any Peclet number, together
with the general scaling law for eutectic growth. For ex-
tremely different parameter sets, we found solutions for the
infinite linear system of equations, Eqs. (5a)—(5d). Espe-
cially for a highly unsymmetrical phase diagram we discuss
the solutions and compare them with the results from the
TMK-model for symmetrical phase diagrams.

2. Theory

By using the Fourier series approach, Egs. (1a) and (1b),
the average composition in the liquid at the interface in front
of the a phase and the 3 phase can be obtained without
knowing the B, coefficients explicitly:

. PeACy
Cro=Cx+ By + P(fo, Pe, ko, kg, Coo) ~ (62)
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where the generalised P-function is introduced
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The prefactor in the definition of the P-function is chosen
so that the results from the present study can be directly
compared with the JH- and the TMK-model. ACq := (1 —
ko) + (1 — kp) can differ from the difference of the maximal
solubilities of the o phase and B phase at Tg as the front
might be significantly undercooled. The dependence of the
P-function from f,, Pg, kq, kg and C, can be deduced from
the coefficients of the infinite linear system of equations,
Eqgs. (5a)-(5d). Note that from Eq. (5a) it can be derived that

Pg(kg — ko)

P(f, P, ko, kg, Cxo)-
a0 — 1 (fa E B o)

By = By —- (N
with By, := (bp — Cooa0)/(ao — 1). Thus, CL,q and CLyg, are
linear functions of the P-function. For k, = kg = k Eq. (7)
becomes Eq. (15) in [3} and B, = By. For this case the
P-function defined in Eq. (6¢) turns into Eq. (16) in [3].
By an analogue procedure as the one described by Jack-
son and Hunt in [1] the relation between average undercool-
ing at the front, ATg, interlamellar spacing, Ag and growth
velocity, V, can be obtained without knowing the B, coeffi-
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cients explicitly. This generalised relation is

BTe = KiVig Pfu, Fou ks ko Coc) + T2 ®)
The constants K is now defined as K; := K1 (ACy/ACE).
K> is defined in Eq. (2b). Note that this A Tg-V-Ag relation is
equivalent to Eq. (2a) with the exception that the P-function
is defined without knowing the B,, coefficients.

Applying the minimum undercooling principle, we get
from Eq. (8) (again without knowing the B, coefficients),
the generalised scaling law for eutectic growth

K> 1

MV="Te— 9
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The undercooling at the eutectic interface is obtained as

AeATE = Ky (1 4+ —— (10)
EATET 2 P+ igdP/org )

With AgoP/olg = PpdP/0Pg, it is obvious that the right
hand side of Eqgs. (9) and (10) depends on f,, Pg, ko, kg and
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Fig. 2. The variation in the P-function: (a) with fy for different values of Py, and (b) with Pg for different values of fi. The distribution coefficients
were chosen extremely different with ko = 10~® and kp = 0.999999. Coo was set 0 0.5. The bold black curve in (a) represents the prediction of the
Jackson—Hunt model.
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Coo. Egs. (9) and (10) have been derived earlier by Trivedi
et al. for the two considered types of phase diagrams men-
tioned above (see Eqs. (12) and (14) in [3]). However, we
have not yet specified the unknown B,, coefficients, whereas
in [3] these coefficients were explicitly determined.

To solve the infinite linear system of equations,
Egs. (5a)-(5d), we have used MATHEMATICA (version
4.1) as numerical tool. For 0 < f, <1, 1072 < Pg < 10%,
Coo = 0.1 and 0.5 as well as ko = kg = 1075 and 0.999999
and ko = 1076 and kp = 0.999999 and vice versa, we have
tested the convergence of the P-function calculated from the
solutions of finite subsystems of dimension m. For all inves-
tigated parameter combinations the P-function converged
fast: by solving a subsystem with a dimension of only
m = 20 the accuracy for the P-function is better than 0.1%.

At the end of the theory section, we would like
to mentioned that the solute conservation equation,
fuCLa + foCLp = Coo, cannot be used to estimate f,
as it has already been used in the theory. This is true for
the JH-, the TMK- and the presented general approach. As

suggested by Kassner and Misbah [4] f, should be implic-
itly estimated from the condition of an isothermal interface,
AT, = ATy which gives

(Ima] + Ima[Coo + Bo — Cel + PEP(fu, P, kas kp, Coo)

. (lmal_@)z Fp( sin 6g )_Pa( sin By )
fo S fo(g/2) fa(Ag/2)

(1)

3. Results and discussion

For ko = 0.9999999 and kg = 1076 the variation in
the P-function with f, for different values of Pg is shown
in Fig. 2a and the variation in the P-function with Pg for
different values of f, is shown in Fig. 2b The corresponding
figures for k, = kg — 0 can be found in Fig. 4a and b in
[3] and for k, = kg — 1 in Fig. 3a and b in [3]. For a
symmetrical case (k, = kg = k) and small Pg the variation
in the P-function with f,, is independent of k and equal to the
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Fig. 3. The variation in )‘213 V: (a) with fi for different values of P, and (b) with Pg for different values of fi. The distribution coefficients were chosen
extremely different with ky = 1076 and kg = 0.999999. Co, was set to 0.5. The bold black curve in (a) represents the prediction of the Jackson-Hunt

model.
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Fig. 4. The variation in Ag: (a) with f, for different values of Pg, and (b) with Py for different values of fy. The distribution coefficients were chosen
extremely different with kg = 1076 and kp = 0.999999. Coo was set to 0.5. The bold black curve in (b) represents the prediction of the Jackson-Hunt

model for fo = 0.99.

P-function of the Jackson—~Hunt approach {3]. This curve is
also shown in Fig. 2a (bold black). The comparison shows
that for k, # kg the P-function becomes unsymmetrical with
respect to f,, even for small Pg. Therefore, it is generally not
described by the JH-model. For the symmetrical case with
small k the P-function increases with increasing Pg (Fig. 4b
in [3]), for large k the P-function decreases with increasing
Pg (Fig. 3b in [3]). As shown in Fig. 2, in the unsymmetrical
case the P-function increases with increasing Pg for most
value of f,, only for f, = 0.99 it decreases. From that finding
it is obvious that in the unsymmetrical case, the smaller
of the two distribution coefficients dominates the eutectic
growth process. In the present case (ky = 0.9999999, kg =
1075) the a-lamellae grow without any significant solute
redistribution. On the other hand, the solute redistribution
ahead of the B-lamellae is large and further growth of these
lamellae can only occur if diffusion reduces the high solute
concentration in front of the lamella. Therefore, diffusion
of the element with the smaller £ is more important than
diffusion of the other species.

These two findings, that for k, # kg the prediction of the
JH-model may become wrong even for small Pg and that
the smaller of the two k’s dominates the growth process, can

also be seen from the variation in A%V with f, for different

values of Pg as shown in Fig. 3a and the variation in A%V
with Pg for different values of f, as shown in Fig. 3b. The
corresponding variation in Ag and AT is resented in Fig. 4a
and b and Fig. 5a and b. The dimensionless correspondence
of A%V and the dimensionless spacing Ag and dimensionless

undercooling ATE are defined by

A2V = AZVKll = ' (12)

EY 7BV K, T P+ AgdP/Org

Sy 2DK] 1 1 i

B T, T Pe P+ ApdP/Og

_ 2DK,  2Pg oP

ATE == ATg LR (2P+AE—-). (14)
fafB fufB 3)\E



A. Ludwig, S. Leibbrandt/Materials Science and Engineering A 375-377 (2004) 540-546 545

. —

—

Wl T T T T 000

~7710000
N ™~

-~ N,

—

(a)

(b)

Fig. 5. The variation in ATEg: (a) with fy for different values of PE, and (b) with PE for different values of fy. The distrbution coefficients were chosen
extremely different with kg = 1076 and kﬁ =0.999999. Cy was set to 0.5. The bold black curve in (b) represents the prediction of the Jackson—Hunt

model for fo = 0.9.

The motivation for these definitions are from Egs. (9) and
(10) and Eqs. (20) and (21) in [3]. In order to estimate the
right hand side of Egs. (12)—(14), we have first calculated
P + AgoP/OAg = P + ProP/0Pg by using the approxi-
mation P 4 PgA P/A Pg. Unfortunately, in many cases this
approximation tends to zero as soon as A P/A Pg becomes
negative. As a result the quantity (P + PgAP/APg)~! of-
ten reveals a singularity at Pg > 1, even for the symmetrical
TMK case. With this approach we were not able to repro-
duce Fig. 8 from [3]. We believe that numerical inaccura-
cies are the reason for this problem. We decided to use the
following approach. From the definition of the P-function,
Eq. (6¢), we got

P P 1 N[ 8B, sin(nnfy
SR Z 1 ( f) (15)
0 Pg Pg PgACy el oPp nmw
so that the following expression is obtained
aP 1 < [ 8By, sin(nrfy)
P+rip—=— —. 16
e ACbn_l[afh nm )

This equation was then used by replacing the derivative by
the ratio of differences. So we have solved the system of
equation, Egs. (5a)—(5d), twice for two adjacent Peclet num-
bers and apply Eq. (16).

As already predicted by the symmetrical approach of the
TMK-model, the eutectic scaling law )%V = const. does not
hold at large Pg. Opposite to the behaviour of the P-function,

A%V (or more exactly }\%V) decreases with increasing Pg
for ke = kg — O until a certain limit slightly above Pg =
103. For ko = kg — 1 A2V increased with increasing Pg.
Here, no upper limit was found. In the present unsymmetri-
cal case, the extreme small value of kg leads to a decreasing

characteristic of the A% V—Pg curves even for large amounts
of f,. A similar statement is true for the variation of Ag with
Pg (Fig. 4b). As the solidification interval is inverse pro-
portional to the distribution coefficient, small k£’s result in
large solidification intervals ATs. Trivedi et al. [3] found
that for k, = kp = k the eutectic undercooling approaches
for large Pg towards the corresponding solidification inter-
val. For the presented unsymmetrical case it becomes ob-
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vious from Fig. 5, that for large Pg, ATg approaches the
solidification interval of the element with the smaller k. In
this regime the eutectic growth should become a one-phase
growth only and the corresponding phase amount should ap-
proach 1.

4. Conclusions

The outcome of this work can be summarised by the fol-
lowing conclusions:

e To get a solution of the general planar eutectic problem
(ko # kg, any Pg) an infinite system of equations has to
be solved.

o For all investigated parameter combinations the solution
of finite subsystems converged rapidly.

e The TMK eutectic scaling laws are valid even without
knowing the explicit solution of the infinite system of
equations.

¢ Solutions for k, # kg are unsymmetrical (even if Pp <
1). They are dominated by the solute with the smaller k.

e f, should be estimated from the implicit equation AT, =
ATj rather than from the solute conservation equation.
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