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Abstract. An efficient model for the prediction of dendritic grain growth is developed coupling
the lattice Boltzmann method for solving the transport of solute and a cellular automaton
algorithm for determining the evolution of grains’ envelope and the release of solute during phase
change. In contrast to solving equations from the field of continuum mechanics the new model is
more related to particular occasions what is more similar to the behaviour of cellular automaton
algorithms. The resulting dendritic grain growth shows qualitative correctness, although the
consideration of solute conservation is still missing. It is shown that neglecting proposed
conditions regarding the choice of time step size can destabilize the solid-liquid interface resulting
in secondary and ternary dendrite arms.

1. Introduction
There are several approaches of simulating dendritic grain growth. Besides phase field and front
tracking simulations, cellular automaton (CA) is quite often used based on the work presented by
Gandin and Rappaz [1, 2]. Herein, the evolution of the grain’s envelope is related to the thermal
undercooling using the model proposed by Kurz, Giovanola and Trivedi (KGT)[3, 4] for rapid
solidification. This approach is extended in [5] considering solute and curvature undercooling
and continued for three dimensions [6]. It is coupled to the lattice Boltzmann method (LBM)
considering fluid flow in [7, 8] and compared with results from phase field simulations in [9]. A
different approach is chosen in [10] employing thermal LBM with an enthalpy-porosity technique
for the simulation of dendritic grains with fluid flow. These all have in common the calculation
of the curvature of the interface between the solid and liquid phase what is demanding on the
resolution and the computational effort calculating spatial gradients.

The objective of the present work is to more efficiently simulate solidification offering dendritic
structures using a CA for determining the evolution of growing grains and the LBM for solving
transport of solute. The proposed model aims to be more accurate with respect to the grain
shape and microsegregation than the original CA of [1, 2] by considering solutal undercooling.
In contrast to [11, 7, 10] undercooling due to the curvature of the solid-liquid interface is
neglected. Thus, no gradients using the finite difference method have to be computed. The
new approach should not act as an alternative for solving continuum mechanical equations in
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its equilibrium state but combining the state driven behaviour of cellular automaton [12] and
analytical equations. The increased efficiency should enable the integration of grain growth
models in full scale industrial application in the future.

2. Model description
LBM is coupled with a CA for the simulation of the dendritic grain growth. These are not weakly
but fully coupled following the categorization of [13]. Compared to previously mentioned work
the release of solute is not done in the way of continuum mechanics but following the idea of
discrete occasions which is explained at the end of this section.

2.1. Lattice Boltzmann method for solute transport
LBM is applied for the computation of the diffusion of solute c neglecting any advection

∂c

∂t
= D

∂2c

∂x2
(1)

assuming constant diffusivity D. LBM is based on the relaxation of non-equilibrium states
derived from a statistical distribution of particles. There are basically two operatrions which
define the computational sequence: there are the collision and the streaming operation. The
collision of the discrete distribution of particles gi(~x, t + 1) at the spatial position ~x and the
time t+ 1 is determined as

gi(~x, t+ 1) = gi(~x, t)−
1

τ
(gi(~x, t)− geqi (~x, t)). (2)

using the Bathnagar-Gross-Krook dynamics with its linear collision operator [14, 15] and the
relaxation time τ . The equilibrium state geqi = cwi is defined using the lattice weights wi

following the multiscale Chapman-Enskog analysis [16]. The solute is reconstructed by

c =

n−1∑
i=0

gi. (3)

The sum is limited by the amount n of discrete velocities ~ei and corresponding weights wi which
depend on the chosen lattice. On the two-dimensional cartesian grid, the D2Q5 lattice with
n = 5 is chosen. This reduces the computational effort and the requirements regarding memory
capacity compared to the commonly used D2Q9 lattice. The D2Q5 lattice guarantees second
order rotational invariance [16]. This is sufficient for the reconstruction of a diffusion equation.
The diffusivity D in equation 1) is related to the relaxation time τ by

D = c2s(τ −
1

2
)
∆x2

∆t
(4)

with the lattice speed of sound cs = 1/
√

3 for the D2Q5 lattice. ∆x and ∆t are the spatial
and the temporal discretizations which have to be chosen in a way that τ > 1/2. Thus, the
relaxation time τ is defined for the liquid and the solid phase depending on the diffusivity in
the liquid Dl and in the solid phase Ds, respectively.

The collision is fully local which requires no communication to neighbouring voxels
(discretization points) since the left hand side and the right hand side of equation 2 are function
of ~x. Whereas, the streaming operation streams information from ~x to the next neighbour ~x+~ei
which is defined as

gi(~x+ ~ei, t+ 1) = gi(~x, t+ 1). (5)
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2.2. Grain growth algorithm
The CA algorithm for simulating the evolution of growing grains is derived from the original
work [1, 2] and the decentred squares [17]. The state of a cell - it can be either liquid, interface
or solid - and its evolution depend on the state of the neighbouring cells, the local temperature
and the local solute. Thus, it is not fully local because there are eight neighbours (and the cell
itself) in two dimensions using a cartesian grid. In the original CA grain growth algorithm, the
spatial discretization ∆x is recommended to be about the secondary dendrite arm spacing λ2
[2]. For the binary alloy Al-Cu and moderate cooling rates, the secondary dendrite arm spacing
is estimated to λ2 ≈ 10− 40 µm [18] for a parameter study. In the modified CA algorithms the
spatial resolution has to be much smaller since the models fully resolve the interface and the
secondary dendrite arms as well. For this, the spatial resolution is chosen ∆x ≈ 1 µm or even
smaller [11, 7, 9]. In the presented model, the spatial discretization should be 1 µm < ∆x < λ2
to become more reliable for large-scale applications with respect to the computational effort.
Since the discretization can be chosen in a way the secondary dendrite arms can not be resolved,
different models have to be applied. Therefore, the grain growth algorithm is defined for two
regions. The inner region Ωin is enclosed by the envelope region Ωenv. The envelope region
Ωenv describes the interface between the fully liquid and the partially solid region with the
solid fraction 0 < fs � 1 whereas Ωin can be fully solid or partially solid (0 < fs ≤ 1).
Basically, the models are taken from the work presented in [19] and adapted in a way to get
more precise information about the grain shape. In all cases the growth velocity is related to
the supersaturation

Ω =
c∗l − cl
c∗l − c∗s

=
c∗l − cl
c∗l (1− k)

(6)

with the partition coefficient k = c∗s/c
∗
l , solid c∗s and liquid c∗l solutal equilibrium concentration

and local liquid concentration cl. It is assumed that for Ωenv the model proposed by Lipton,
Glicksman and Kurz (LGK) [20, 4] is valid although it is derived assuming a paraboloid primary
dendrite tip in steady state condition without any neighbours. The growth velocity venv is
determined as [20]

venv = vtip = vLGK =
Dl ml cl(k − 1)

Γπ2
(Iv−1(Ω))2 (7)

with the solute diffusivity Dl, the liquidus slope ml, the solute concentration of the liquid cl,
Gibbs-Thomson coefficient Γ and the inverse of the Ivantsov equation Iv−1(Ω) for the two-
dimensional space [21]. The initialization of the solid fraction for the inner region fs,init after
going through the envelope region Ωenv has to be assumed at the current state of this work. For
the inner region, the growth velocity is defined as

vin =
Dl

ld

c∗l − cl
c∗l (1− k)

(8)

substituting the interdendritic (liquid) concentration cd from [19] by the liquid concentration cl.
The characteristic diffusion length ld can be estimated according to [22] by ld = β2(λ2 − d2)/2
with the diameter of the secondary dendrite arm d2, and the constant β2 = 1.0. It can be
approximated by [19]

ld = β2
λ2fl

2
. (9)

substituting the interdendritic liquid fed in [19] by the local liquid fraction fl within Ωin. The
equation for the growth algorithm is applied as long as the the cell is still partially liquid fs < 1.
If fs = fs,limit the cell becomes fully solid and the diffusivity is changed to D = Ds. A surface
area concentration S is missing in combination with the growth velocity vin for determining the
change of the solid fraction dfs/dt = vin S. The envelope liquid fraction fe is substituted by
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the liquid fraction fl and the Avrami factor in [19] is neglected due to the increased resolution
compared to [19]. This results in the surface area concentration

S =
2

λ2
fl. (10)

Following this approach, results in a non-discrete interface between the liquid and the solid region
and the co-existence of solid solute and liquid solute at each cell are allowed. It is an averaged
field of solute and solid fraction. Thus, if one would determine the solute only depending on
the solid fraction [7] the solute at the envelope region would be underestimated and the high
gradients, especially close to the primary dendrite tip, would not be represented. This would
lead to an underestimated concentration field and a wrong tip velocity using the LGK model.
Therefore, the solute release is defined as a particular occasion setting the concentration of the
liquid phase cl = c∗l and the concentration for the solid phase cs = c∗s. These are defined each
time the integrated growth velocity over time t

l =

∫ tj

tj−1

v dt (11)

exceeds a certain characteristic length l starting at the last time an occasion occured tj−1 until
the current time tj . The characteristic length is determined as the spatial resolution l = ∆x.
The growth velocity v is either the one of the envelope region venv or the inner region vin.
Subsequently, the released solute is diffused in the liquid phase using LBM. The time step for the
simulation basically depends on several parameters. Thus, it is restricted by the stability of LBM
for the transport of solute (see eq. 4) and by the growth velocity of CA. The supersaturation
can restrict the time step for the CA depending on the cooling rate. The time step is defined
depending on the maximum of velocity venv with the scale factor γ - which is in general bounded
by 0 < γ ≤ 1 for a stable algorithm and proposed to be chosen as γ = 1/10 in [23]:

∆t = γ
∆x

max{venv(cl)}
. (12)

3. Simulation setup
The evolution of a single equiaxed grain with the crystallographic orientation of 20◦ in an Al-
4.7wt.%Cu alloy is simulated in a two-dimensional domain of the size 1 mm x 1 mm. The alloy
related parameters are listed in table 1 taken from [18]. The simulation starts at the liquidus
temperature Tl and is isotropically reduced applying a constant cooling rate Ṫ = 30 K/s. The
free model parameters λ2, fs,init and fs,limit are assumed to be constant (see table 1). Two
spatial resolutions are distinguished: (1) ∆x = 5 µm and (2) ∆x = 2.5 µm. The time step is
defined equally for both spatial resolutions as ∆t = 1.5 · 10−4 s. Thus, for the higher resolved
simulation γ ≤ 1 is not fulfilled (see eq. 12) which results in a destabilized behaviour.

Table 1 Simulation parameters for Al-4.7wt.%Cu

Thermophysical properties Thermodynamic properties Model parameters

Dl = 3 · 10−9 m2/s Tm = 933.5 K λ2 = 10 µm
Ds = 8 · 10−13 m2/s ml = −344 K fs,init = 0.1
L = 3.97 · 105 J/kg k = 0.145 fs,limit = 0.85
ρs ≈ ρl = 2743 kg/m3 Γ = 2.41 · 10−7 m K
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4. Results
At time t = 0.87 s and t = 1.02 s the extent of the dendrite tips and the solute concentration
is different with respect to the spatial resolution (see figure 1). Herein, the solute concentration
is determined as c = cl(1 − fs) + csfs. Focusing on the solid fraction fs, the lower resolution
(left half of the pictures) shows a more averaged field whereas the higher resolution (right half
of the pictures) shows some detailed resolved secondary dendrite arms (fs > 0). The solute
concentration at t = 1.02 s shows a characteristic behaviour of this algorithm: resolution (1)
with the stable CA shows a very diffusive behaviour. In contrast, resolution (2) with the unstable
CA shows less dominant diffusion. There is a very high gradient of the solute concentration close
to the liquid-solid interface especially in the region of secondary dendrite tips which seem to
overtake the diffusive process. Further refining as well as coarsening shows that the results are
strongly dependent on the spatial resolution. In general the solute is not conserved using this
approach. The change of solute over time depends on the growth velocity and in most cases the
total solute strongly increases.

The destabilized simulation shows secondary dendrite arms and even tertiary dendrite arms
in a later stage. It seems to be physical in a way, but the destabilization is not related to the
interface anisotropy. In the present work it is related to the ratio of user-defined time step and
growth velocity which again depend on the solute and thermal undercooling.

The simulation time for the stable and the destabilized setup is 25 s and 96 s, respectivley,
running in parallel on a quadcore notebook processor.

(a) Solid fraction fs (b) Solute concentration c

Figure 1 Solid fraction fs and solute concentration c during equiaxed dendritic solidification
with the crystallographic orientation of 20◦ in an isotropically undercooled (Ṫ = 30 K/s) Al-
4.7wt.%Cu melt at two different times t = 0.87 s (top) and t = 1.02 s (bottom) for resolution
(1) (left half in each figure) and resolution (2) (right half)
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5. Discussion
The presented model meets the expecations regarding the determination of grain growth showing
secondary dendrite arms or an averaged field depending on the user-defined resolution. On the
contrary, the solute is not conserved and the accuracy depends on the spatial and temporal
resolution. This also related to the issue that there is no energy or force at the envelope which
pushes the solute concentration which has to be improved in future work. There is no sharp
transition of phases. Future modification has to strongly focus on the conservation of species.

Furthermore, it has been shown that growing secondary dendrite arms can be simulated using
a destabilized simulation setup. For physically correct destabilzation the condition regarding the
growth veocity and the influence of spatial and temporal resolution has to be further investigated.

6. Outlook
This work should constitute the basis for more sophisticated simulations considering the
interaction of multiple grains, microsegregation as well as the transport of grains in 3D.
Therefore, the future work will heavily focus on the efficiency of the newly developed model
considering the conservation of species. Furthermore, its application in the three-dimensional
space must be approved.
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