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Abstract. Solidification during twin-roll casting happens by cooling of the melt between two 
counter-rotating rolls, where the molten alloy is constantly fed in. For an inoculated Al-melt, 

grain growth leads to a gradual increase of solid fraction, so that a coherent solid network 

forms. Depending on the process condition, this solid network might be subjected to 

compression within the gap between the two rolls. By using a two-phase volume average 

model that accounts for (i) transport and growth of spherical grains within a flowing melt, (ii) 

formation of a coherent solid network above a specific solid fraction and (iii) viscoplastic flow 

of the solid network saturated with interstitial melt during casting and compression, the process 

is numerically analysed. It is found that an optimum process with minimum macrosegregation 
can be achieved for conditions where the kissing point of the two viscoplastic semi-solid shells 

nearly coincides with the roll nip. It is demonstrated how casting speed, cooling intensity and 
strand thickness must be related to hit the optimum process window. 

1.  Introduction 

Twin-roll casting is an emerging commercial material processing technique that produces thin strips 

directly from molten metal. As the casting and hot rolling processes are performed at the same time in 
the production line, the technology requires less initial investment and ensures a more energy efficient 

process than conventional continuous casting techniques.  

As a result, interest has grown among engineers and researchers, and many studies have been 
carried out over the past years. For instance, several experiments have been conducted to optimize the 

operating conditions, such as the pouring temperature, set-back distance, strip thickness or casting 

speed [1,2]. Other researchers have instead studied micro- and macro-defects, ranging from surface 
bleeds, internal defects, hot tearing and buckling [3,4]. However, there is obviously a limit to how 

much information one can obtain solely from measurement techniques applied to experimental trials.  

Comprehension of the twin-roll casting process requires a thorough understanding of the complex 
flow dynamics that develop during the production of the strip. That is why numerical models have 

been employed to accomplish this task. Accordingly, due to the stiff nature of the problem, finite 

element simulations are widely used for that purpose, although they often rely on a single phase 
thermo-mechanical model originally designed for the analysis of pure rolling [5].  

However, deformation of the partly solid shells is usually an important mechanism in twin-roll 

casting. It is known that the deformation of a solid-liquid mixture above a certain solid fraction can 
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lead to macrosegregation [6,7]. In order to capture these flow dynamics, it is essential that the solid-

liquid mixture is considered as a contiguous solid skeleton saturated with interstitial liquid when the 
solid fraction exceeds the specific threshold. In the present paper, this stage is referred to as the 

viscoplastic regime and the major distinction – compared to the lower solid fraction regime – is that 

the rheology of the flow is now dictated fundamentally by the solid phase. Therefore, in the case of an 
alloy in the semi-solid state being subjected to deformation, the corresponding motion of the coherent 

structure drives the liquid flow, which means that at this stage, the mechanical character of the process 

takes over the fluid flow dynamics, and consequently, the melt becomes the passive phase which 
reacts to the solid behavior. 

In the present work, a two-phase volume-average model is used to replicate a twin-roll casting 

scenario. The model considers the entire spectrum of solid fractions, and so it is able to deal with an 
almost completely molten alloy and turn it into a fully solid material, and vice-versa. Furthermore, 

above a specific criterion, the equiaxed crystals are assumed to behave according to a dense coherent 

network which interacts with the interstitial liquid. This means that mush deformation is accounted for 
by mean of a viscoplastic model that is employed when the solid fraction is above 0.57.  

2.  Numerical implementation 

The simulation of the twin-roll continuous casting presented in this paper relies on a two-phase 
Eulerian-Eulerian volume-average model. The general approach solves mass, momentum, species, and 

enthalpy conservation equations for each phase. Additionally, a transport equation is also taken into 

account for the calculation of the number density of grains across the domain. A detailed description 
of the corresponding governing equations has been made in a previous publication [8], so the 

interested reader can refer to those contributions for further details. For the sake of conciseness, only 

the most relevant equations will be highlighted here. 
The important novelty of this model is the implementation of the viscoplastic regime, which is 

imposed when the solid fraction exceeds t

sg  = 0.57. The change in material behavior is transmitted 

through the viscous stress tensor, which is then defined differently depending on the solid fraction.  
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Below the viscoplastic threshold, the equation is defined by the general Newtonian viscous stress 

tensor (assuming that bulk viscosity is zero). This expression is analogous to the one adopted in the 

liquid phase with the strain rate tensor for either of the phases (i) being given by 

 1 2 ( )T

i i i   ε v v . In the viscoplastic regime, on the other hand, experimental studies on the 

behavior of metallic alloys at high temperatures show that the solid phase can be described by the 

equation presented above [6].  
Comparison between the two equations defined for each regime shows that above the transition 

criterion a second term is considered in the formulation. This term is related to the bulk viscosity and 

corresponds to a normal compression force considered in this regime. Note that A and B are two 

rheological parameters proposed by Nguyen et al. [6], which can be written as follows: 

 
6.47 6.94

3 1
and 1

s s

A B
g g

    (2) 

In Eq. (1), the terms 
s  and app

s  represent the solid viscosities in each of the regimes. For low 

solid fractions, Ishii [9] postulated that the mixture viscosity of a set of particles can be expressed 
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according to the power-law viscosity model. Assuming the general mixture rule as mix s s l lg g    , 

the solid viscosity can be given by: 
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where p

sg  is considered as a fitting constant that represents the random loose packing limit for 

spheres. Following the experimental results from Olmedilla et al. [10] p

sg = 0.585 has been adopted 

here. 

Regarding the viscoplastic regime, the apparent solid viscosity generally accepted in the literature 

takes the form of the Herschel–Bulkley model: 

  
1

app eq3 3
m

s v sK 


  (4) 

where vK  and m  are the viscoplastic consistency and the strain-rate sensitivity, respectively. The 

latter parameter is usually assumed as a fixed value which depends on the material properties. In the 

present work, it is set as 0.213. On the other hand, the viscoplastic consistency can be calculated by 

combining the strain-rate tensor proposed by Nguyen et al. [6] and the Norton-Hoff stress-strain-rate 
relation. It takes the value of 6.31×106 Pa s. 

As for the equivalent strain rate presented in Eq. (4), it is given by the following expression: 

  eq 22 2 1
3 9

( : ) tr( )s s s sA A B
   ε ε ε  (5) 

which again depends on the rheological parameters defined in Eq. (2). 

Details on the microscopic phenomena and the coupling between the conservation equations have 

been described in detail in companion papers [7,8]. 

3.  Results and discussion 

The schematic diagram of the geometry replicated in the simulations is illustrated in Fig. 1. The results 

have been obtained for an inoculated Al-4wt.%Cu alloy ( 2.5wt.% ). Since the width of the sheet is 

in concept much larger than its thickness, the test case is assumed to be 2D. A mesh composed of 5700 

cells was used, which corresponds to an average cell size of approximately 0.85 mm per 0.47 mm. The 

time step was variable, but stayed in the order of 10-4 s a few moments after the start of the simulation. 
Also, the effect of gravity is neglected at this point, so the interpretation of the results is not influenced 

by the sedimentation of the crystals. The densities of the solid and liquid phases are assumed to be 

equal (ρ=2743 kg/m3), so solidification-induced feeding is also neglected at this point. 
 

 

Figure 1. Schematic representation of the twin-roll continuous casting process. 
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The melt is injected into the domain through the inlet with a fixed pressure field (p=105 Pa) at 925 

K. Dirichlet boundary conditions are imposed at the inlet to solid fraction (10-5, i.e., almost negligible 
amount), initial crystal diameter (d=5 µm), and liquid and solid species mass fractions (cl=0.025 and 

cs=0.0036, with the values taken from the phase diagram). Regarding the temperature, it is set as 925 

K at the nozzle surface, and zero gradient at the outlet. In the roll and strip sections, on the other hand, 
a heat flux is imposed between the surface and each of the two phases with a constant heat transfer 

coefficient of 5.5 kW/m3/K. Even though the assumption of equal heat transfer coefficient in the strip 

and roll is generally not precise in practical environments, it has been adopted in the present work to 
simplify the simulation as much as possible for a proper understanding of the flow dynamics and 

macrosegregation patterns.  

The velocity boundary conditions for the liquid phase are assumed as free-slip at the nozzle, roll 
and strip sections, whereas for the solid phase they are set as no-slip instead. At the outlet, two 

different scenarios are considered: Case A has a casting speed of 0.040 m/s, whereas Case B is set 

with a casting speed of 0.025 m/s.  
The steady state results for the solid fraction in both Case A and Case B are illustrated in Fig. 2 a) 

and b), respectively. The black contour line in each of the snapshots represents the solid fraction at 

which the viscoplastic regime starts. In Fig. 2b), besides this, also the contour line from Case A is 

presented with white dots. 

a) 

 
 

b) 

 

Figure 2. Steady state results for the solid fraction in both a) Case A and b) Case B. 

 

It can be seen that as the casting speed is reduced to 25 mm/s, the cooling rates become higher and 
thus the thickness of the partly solid shells increases. As a result, the kissing point occurs slightly 

upstream, which leads to larger compression forces to take place, and thus the viscoplastic mush ends 

up by squeezing more material out of the structure (in the form of melt and equiaxed crystals) against 
casting direction (i.e. reverse flow). This causes melting to occur in this particular area and thus solid 

gradually disappears (see the dark blue area appearing along the centerline upstream of the kissing 

point). 
Obviously, such flow dynamics have an important effect on macrosegregation. Deviations from 

nominal composition are shown in Fig. 3 for both cases examined here. It becomes clear that in Case 

B the significant positive segregated centreline appears as a result of the reverse flow discussed above. 
Furthermore, negatively segregated bands located near the surface are predicted next to positively 

segregated bands in both Case A and Case B. To understand these findings, one has to combine 

information regarding the general direction of the flow with the relative velocity between solid and 
liquid. 
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a) 

 
 

b) 

 

Figure 3. Steady state results for solid fraction in a) Case A and b) Case B. Data range has been 

limited for better understanding of the deviations from nominal composition. 
 

Figure 4 presents the relative velocity between solid and liquid in x- (top half) and y-components 

(bottom half) with black arrows representing the relative velocity of the flow. Note that the arrows 
only express the direction of the relative flow and not the magnitude as the arrows have all the same 

size. Instead, the magnitude of the relative flow between phases can be identified through the relative 

velocity snapshots. The arrows, on the other hand, allow one to keep a clear perception of the 
dominant phase in each region of the domain. Also, note that the range of the color legend has been 

reduced so the different mechanisms become clearer. 

a) 

 
 

b) 

 

Figure 4. Steady state results of liquid velocity for both both x- (top half) and y-component 

(bottom half) for a) Case A and b) Case B. Arrows representing the relative velocity between solid 

and liquid phases are shown on top of the relative velocity snapshots.  
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The change in relative velocity at the walls is obviously due to the different boundary conditions 

imposed to both phases, as described in the previous chapter. Then, in the section of the domain where 
the rolls are being enforced (between the two vertical markers), one can notice in both cases a slight 

reddish area appearing in the non-viscoplastic regime that fades away as we move towards the 

centreline of the domain. This corresponds to an area where the solid phase is faster than the liquid 
both inwards and downstream. This is because the abrupt decrease in velocity of the melt (between 

casting speed near the surface to almost zero velocity along the centreline) is not accompanied 

immediately by the solid phase because of the much higher viscosity. 
Notice that right after the contour line which establishes the transition to the viscoplastic regime, 

the arrows start pointing outward instead of inward in both Fig. 4 a) and b). This finding marks the 

start of the viscoplastic regime, and means that (contrary to the previous state) the liquid is now 
moving inwards faster than the solid. It also correlates well with the negative macrosegregation bands 

shown in Fig. 3, near the surface. It can be explained by a compression-induced expulsion mechanism 

occurring due to hot rolling of the solid-liquid mixture, which causes segregated melt to be squeezed 
out of the viscoplastic skeleton. As a result of these occurrences, the enriched melt travels to adjacent 

regions in the domain, causing positive macrosegregation to develop in those regions. This justifies the 

appearance of bands with positive deviation from nominal composition located next to bands with 
negative deviation in Fig. 3 a) and b). 

At the kissing point, the two semi-solid shells merge together and form a single continuous casting 

strip. Comparison between Case A (Fig. 4 a) and Case B (Fig. 4 b) shows that in the latter, the relative 
velocities in both components are much bigger in this region because of the larger compression forces, 

as discussed above. In the region where the reverse flow develops in Case B, melt is moving upstream 

faster than the solid, which means that the compression-induced expulsion is such that interstitial 
liquid is squeezed out against casting direction. On the other hand, after the two solid shells have 

merged together, the blue area in the y-component and red area in the x-component of the velocity 

mean that the liquid is moving faster than the solid inwards (because of compression-induced 
expulsion) and upstream (because it is easy for the flow to travel through lower viscosity regions). 

Such flow dynamic leads to an increase in positive macrosegregation near the kissing point region, 

while inducing a slight negative macrosegregation along the centreline because the enriched melt there 
is moving upstream (arrows are horizontal along centreline). 

4.  Conclusion 

Even though twin-roll casting is a promising processing technique, the material properties depend 
greatly on the operation parameters (e.g. casting speed, strip thickness and casting temperature), which 

in turn are difficult to control. In the present paper, two different casting speeds are presented, and the 

outcome of the simulations are discussed in terms of macrosegregation. The two cases illustrate 
significant casting speed differences, and the corresponding effect on the quality of the strip. 

The present results show that, for a specific strip thickness, there is a corresponding casting speed 

that provides minimal deviation from nominal composition. Below this threshold, further cooling of 
the semi-solid is enforced which eventually increases the strength of the compression-induced 

expulsion mechanism and amplifies macrosegregation.  
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