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Abstract: A three-phase mixed columnar-equiaxed solidification model considering 
fluid flow, heat and solute transport is applied to simulate the solidification in a verti-
cal continuous casting. The key features of solidification phenomena in this process, 
such as evolution of columnar phase, evolution and floatation/sedimentation of equi-
axed crystals, thermal solutal convection of the melt and the flow caused by crystal 
sedimentation, development of as-cast structure, the columnar-to-equiaxed transition 
(CET), and formation of macrosegregation, are simulated. It is predicted that there is 
an equiaxed zone in the central part of the strand, and the rest section is filled with co-
lumnar phase (or dominant with columnar phase). A relatively strong negative segre-
gation in the equiaxed zone and a mostly neutral concentration in the columnar region 
are found. Near the CET, there is a so-called middle radius positive segregation band. 
Formation mechanisms of this segregation pattern are discussed.  

1. Introduction 
Vertical continuous casting technique is recently applied to produce large round steel strands and to 
replace some of the conventional ingot castings [1-3]. As shown in Figure 1 (a), the molten steel is 
conducted into the mold through a submerged entry nozzle (SEN) and the melt solidifies against the 
water-cooled copper mold. Below the copper mold, water and air mist sprays cool the strand continu-
ously to maintain solidification of the melt core until it becomes fully solid. One problem is that the 
as-cast product is prone to macrosegregation, when the diameter of the strand increases. A special 
segregation profile across the section is developed, which differs from those of conventional continu-
ously cast round products (small diameter) and conventional strands. No simple experience can be 
referred to control the macrosegregation directly, and experimental investigation would be extremely 
costly. Therefore, a numerical study of the flow phenomena and the formation mechanisms of mac-
rosegregation during solidification is performed. In present paper, a three phase mixed columnar-
equiaxed solidification model by Wu [4] is applied to analyze flow, solidification, columnar equiaxed 
phase transfer and evolution of macrosegregation in the vertical continuous casting. The aim of this 
paper is to simulate the as-cast structure including macrosegregation.  
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Some other industry results show different segregation patterns, conflicting with the current model-
ing result. Sun et al. [15] reported that there is a remarkable positive macrosegregation in the center of 
a round steel bloom (350 mm diameter) with F-EMS. Li et al. [16] reported the similar results with 
positive macrosegregation at the center of a 380×280 mm2 steel bloom under complex EMS condition. 
The major difference is that they have used F-EMS just before end of solidification, which is not con-
sidered in the current vertical casting process. The F-EMS can modify the flow pattern and the motion 
of the settling equiaxed crystals dramatically.  

Although the first attempt to simulate macrosegregation in the large vertical continuous casting 
gives some promising results and helps to interpret the formation mechanisms of some segregation 
phenomena, the current model is still subject to further improvement. The origin of equiaxed crystals 
by heterogeneous nucleation and fragmentation due to the effect of EMS are not properly modeled. 
The flow pattern influenced by SEN in the mold is also not calculated. Full 3D simulation is needed to 
give a more comprehensive understanding of the transport phenomena. Additionally, quantitative ex-
perimental validation is desired.  

5. Summary 

1)  A first attempt to simulate the macrosegregation in a large vertical continuous casting ( 600 mm) 
by using a three-phase mixed columnar-equiaxed solidification model was made. The modeling re-
sults give valuable insight into the solidification process of the large vertical continuous casting. 

2)  The solidification process in such a large vertically cast strand includes: evolution of columnar 
dendrites, evolution and flotation/sedimentation of equiaxed crystals, thermal-solutal convection 
and flow caused by crystal drag, development of a columnar-to-equiaxed transition, and formation 
of macrosegregation. 

3) The calculated segregation pattern agrees qualitatively with the industry praxis: negative segrega-
tion in the center equiaxed zone, surrounded by a middle-radius positive segregation ring in the 
CET region. The relative motion between different phases successfully explains the segregation 
pattern. 

4) Further modeling effort, especially for the origin of equiaxed crystals by heterogeneous nucleation 
and fragmentation due to electromagnetic stirring, and the corresponding experimental evaluation 
are required in future.  
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