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Abstract: Due to the extreme thermal conditions and short lifetimes, experimental exploration of
cathode spots in vacuum arcs is very difficult. The intensive heat in the cathode spot is believed to be
generated by ion bombardment and by Joule heating. However, thermal conditions occurring inside
the re-melted material in craters created by cathode spots are not accurately known. During the
exposure to cathodic arc plasmas, an Al-Cr cathode’s surface was locally melted by successive ignition
and extinction of cathode spots. The melted layer, that quickly solidified, was characterized by the
formation of several thin layers with a thickness of a few micrometers that were stacked on top of
each other. The corresponding solidification patterns displayed cellular and dendritic microstructures.
A phase field-based model was used to simulate and determine the thermal process conditions that
led to the dendritic structures observed within the re-melted layer. Different combinations of cooling
rates and temperature gradients were numerical explored to determine the most probable thermal
conditions under which the cathode material re-solidifies. The results showed that the material in
the vicinity of the cathode spot crater re-solidified under the condition of a cooling rate of about
3 × 105 K/s and a temperature gradient of about 6 × 107 K/m. These results constitute valuable
data for the validation of numerical models dedicated to cathode spot formation.

Keywords: cathode spot; MICRESS; simulation

1. Introduction

Cathodic arc deposition is a technique frequently used for the deposition of thin films
and hard coatings due to its versatility and the achievable high deposition rates [1]. The
evaporation process begins with the impact of a high current, low voltage arc on the surface
of the cathode, which results in a small, usually a few µm wide, high energy emitting area.
The resulting localized temperature at the so-called cathode spot is so high that a beam of
vaporized cathode material is created that can be employed to deposit thin films and hard
coatings [2]. After the extinction of the cathode spot plasma, a crater remains on the cathode
surface. The cathode spot itself is only active for a short period of time before it ignites
again, typically in close vicinity. As the spot moves rapidly over the entire cathode surface,
the entire surface is covered by countless overlapping craters and re-melted material after
some time [3]. The resulting modified layer can have a thickness of up to several µm and, in
the case of multi-element cathodes, may alter the plasma properties, where the latter may
affect the growth conditions of the thin films or hard coatings, e.g., in terms of chemical
composition or presence of macroparticles or droplets.

For these reasons, detailed investigations of modified layers on multi-element arc
cathodes are of interest. Recently, the effects of arc discharges on the erosion of Al-Cr
composite cathodes have been investigated [4–6]. The detailed analysis revealed the
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formation of modified surface layers where Al and Cr are intermixed, forming intermetallic
Al-Cr phases. These phases and corresponding concentrations correspond fully to the
phase predicted by the equilibrium phase diagram. The microstructure exhibited several
stacked layers, a consequence of the recurring process of melting and solidification of
the surface-near material by the arc plasma. Based on secondary dendrite arm spacing
measurements, an average cooling rate was estimated to be in the order of 106 K/s [6]. A
detailed description of the cathode manufacturing and arc discharge parameters can be
found in [6]. The current work aims to present the realization of the numerical investigations
to determine the temperature gradient and the cooling rate, which led to a dendritic
microstructure of the melted-re-solidified layer, similar to modified layers encountered
on cathode surfaces as shown in Figure 1. For this purpose, several simulations were
performed with the help of the phase field-based software MICRESS 6.2 [7]. Based on
the fact that the microstructure is directly related to the solidification history, thermal
conditions during re-solidification of the melted material can be estimated.
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Figure 1. (a) SEM micrograph of an arc cathode surface formed on an Al-Cr cathode with a few
craters, and (b) cross-section of a modified layer on an eroded arc cathode showing a stack of thin
re-melted layers exhibiting dendritic solidification morphology.

2. Modelling

Since the conditions in the cathode spot and during the formation of the craters are
largely unknown, the required boundary conditions are first constrained by using the Fermi
approach as described in the Section 2.1. Based on the range of possible process parameters,
several numerical investigations were systematically performed. The chosen numerical
parameters and process conditions are described in the next section.

The cast microstructures reflect the solidification history; therefore, conclusions can
be drawn about the growth and process conditions. In a first step, the magnitude of the
solidification length was experimentally estimated. For this purpose, the size of the craters
and the different thicknesses of the modified layer were determined. Scanning electron
microscope (SEM) (ThermoFischer FEI Versa 3D HiVax, Waltham, MA, USA) investigations
of the cathode surface display a vast number of craters which are the result of cathode spot
events (Figure 1a). The radius R of the craters on the cathode was estimated to be in the
order of R = 20 µm. After some time of arc plasma exposure, a continuous modified layer
is established due to a multitude of cathode spots ignited on the cathode’s surface. Details
of the layer in the form of a cross-section are given in Figure 1b, which displays several
re-melted layers with a clear dendritic microstructure. The detected solidification layers
exhibited a thickness of about 3 µm ≤ L ≤ 6 µm.

A detail of a dendrite is shown in Figure 2. According to the Al-Cr phase diagram (see
Figure 3), the dendrite is enriched in Cr and embedded in an Al-enriched darker matrix [5].
The evaluation of the solidification structure shows a secondary arm distance (DAS) of
about λ2 = 175 ± 25 nm. A detailed study using energy-dispersive X-ray spectroscopy
(EDAX-AMETEK, Mahwah, NJ, USA) of the element distribution on this Al-Cr cathode
was presented in [6].
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2.1. Estimation of the Process Parameters

The secondary arm spacing will serve as target for our numerical simulations. The
best fitting results will give reasonable estimation of the actual thermal process parameters.
However, a reasonable range of process parameters (cooling rate and temperature gradient)
should be first extracted from thermodynamics and literature data.

The following parameters were used:

(i) The Cr-Al phase diagram provides the thermodynamical information relating phases,
concentrations, and phase transition temperatures [8];

(ii) The expected relationship between the cooling rate
.
T and the secondary dendrite arm

spacing λ2 was determined based on equations published in [9];
(iii) The criteria for the stability of the solid/liquid (s/l) interface defined whether the

diffusion length was smaller than the size of the microstructures and whether a rapid
solidification process was present, and the magnitude of the temperature gradient
was estimated based on the corresponding equilibrium phase diagram for a Cr-Al
cathode shown in Figure 3.

(i) The Cr-Al phase diagram and the expected solidification path for a concentration
of C = 50 at.% is displayed as red arrows in Figure 3. The creation of a crystal from an
alloy melt causes a local change in the composition. During equilibrium solidification the
concentration of the solid Cs follows the solidus line, whereas the concentration of the
liquid at the interface CL follows the liquidus line. Both concentrations are connected by a
relatively constant distribution coefficient k = CS/CL. In the case of too rapid solidification
conditions [10], a non-equilibrium solidification leads to a highly supersaturated crystal. In
this case, the liquidus line correlates with the solidus line and the distribution coefficient
k becomes 1.

The used data taken from the phase diagram [8] are given in Table 1. The Thermo-
Calc coupling for MICRESS to read in a database was not used. Instead, a linearized
phase diagram based on Figure 3 was used. The missing material values such as the
diffusion coefficients DL, DS, and surface energy σ were estimated in the order of mag-
nitude for typical metals. The entropy of fusion Sf was taken from the thermodynamic
database COST2 [11].

Table 1. Properties and phase diagram parameters of the Cr-Al alloy.

Name Symbol Value Unit

interfacial solid–liquid (s/l) energy σ 1.0 × 10−9 J/m2

entropy of fusion ∆∑ϕ 1.1 × 106 J/m3 K
Gibbs–Thompson coefficient Γ 9.1 × 10−7 m·K

diffusion in the liquid DL 1.0 × 10−9 m2/s
diffusion in the solid DS 1.0 × 10−12 m2/s

concentration in the liquid CL 64.0 at.% Al
concentration in the solid CS 35 at.% Al

initial concentration in the liquid Co 50.0 at.%
liquidus temperature TL 1773.0 K
solidus temperature TS 1593.0 K
slope of liquidus line mL −12.9 K/at.% Al

distribution coefficient k 0.55

(ii) Salas et al. [12] published the relation between the cooling rate
.
T and the secondary

DAS λ2 based on experimental results for 70–30 brass and theoretical reflections [9], as
shown in Figure 4. In the case of the secondary DAS measured for an Al-Cr alloy, in
Figure 2, the predicted cooling rate that formed the modified layers can be estimated to be
in the order of

.
T > 1 × 106 K/s by using the findings from [12].
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Figure 4. Cooling rate vs. secondary dendritic arm spacing for experimental correlation and theoreti-
cal model [11]. For a secondary dendritic are spacing of λ2 = 0.175 ± 0.025 µm (green line), a cooling
rate of

.
T > 1 × 106 K/s is predicted by the experimental correlation (red dashed line).

The theoretical calculation entrenched on the publication of Feurer and Wunderlin [9].
The spacing of the secondary arms λ2 can be calculated based on the solidification time tf.

λ2 = 5.5 × (K × t f )
0.33, (1)

which can also be written as function of the cooling rate
.
T.

λ2 = 5.5 × (K × ∆T
.
T

)
0.33

(2)

Here, ∆T is the temperature difference between the liquidus Tl and the solidus Ts and
K is a coarsening parameter defined by

K =
Γ × DL × ln

(
CL
C0

)
mL × (1 − k)× (C0 − CL)

(3)

Based on the aforementioned correlations (Equations (1) and (2)) and the values given in
Table 1, we can estimate a range for both the solidification time, 6.6 × 10−6 ≤ tf ≤ 1.6 × 10−5 s,

and the cooling rate, 1.5 × 107 ≤
.
T ≤ 2.7 × 107 K/s.

(iii) The formation of the solidification patterns is related to the cooling rate. If the
cooling rate is sufficiently high, a planar solidification front becomes unstable and the
solid/liquid (s/l) interface changes from planar to cellular and to a dendritic solidification
structure. Finally, the solidification front becomes again a stable planar front for high growth
rates in the case when the solute diffusion distance δc approaches the solute capillarity
length sc [7]. The solute diffusion distance δc is given by

δc ≈
D
V

(4)

and the solute capillary length sc is

sc ≈
Γ

TL − TS
(5)
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If the solidification rate exceeds the marginal growth rate Va, also known as absolute
velocity [10], the interface forms again a planar front. The absolute growth velocity is
given by

VA =
(TL − TS)× DL

k × Γ
(6)

By using Equations (4) and (5) and the specification from Table 1, the absolute
velocity Va is reached for the system Al-Cr when the solidification velocity exceeds
V ~ 2.0 × 106 µm/s. Due to the experimentally observed dendritic solidification struc-
ture, it can be assumed with confidence that the absolute velocity was not reached within
the modified layer and, hence, the actual solidification velocity can reasonably be assumed
to be much smaller than the absolute velocity.

(iv) The estimation of the temperature gradient is of particular importance, since
this, together with the surface energy σ and the diffusion coefficient in the liquid DL, has
the greatest influence on the numerical investigations. In contrast to the two parameters
mentioned above, the temperature gradient can vary by several orders of magnitude. In
return, the melt surface temperature was just below the evaporation temperature. From this,
it follows in a simplified form that the temperature gradient acts over the entire melting
depth, which was roughly the same as the solidification length. In order to estimate the
temperature gradient, the size of the solidification length lsol and the temperature difference
∆T should be estimated. The solidification length lsol was found to be in the range of 3 µm
for the cross-section direction (Figure 1a) to 20 µm for the horizontal direction (Figure 1b),
or lsol = 11.5 ± 8.5 µm.

In cathodic arc plasmas, the surface of the cathode material is heated up by the arc spot
in such a way that part of the material evaporates. The evaporation temperature depends on
the pressure, which was set in this study to 1 Pa in the extended vacuum chamber. However,
in the current case the pressure in the cathode spot is of interest which is generally much
higher and believed to be in the order of 0.1 GPa [1]. Since the vaporization temperature
increases with pressure, the evaporation temperature under ambient pressure was used
as the minimum expected temperature at the melt/vacuum interface. The evaporation
temperature was estimated to be TB = 2612 K at the concentration C0 = 50 at.%, provided
that the evaporation temperature is between the values of the pure substances, TB = 2755 K
for Cr and TB = 2470 K for Al. Considering a maximum undercooling of 3 K for the Al-rich
peritectic phase at the peritectic plateau, the solidification finished at the latest at T = 1590 K
(Figure 3). This assumption is based on the fact that the constant bombardment of the
cathode surface provides sufficient surface fluctuations to activate the nucleation event
of the peritectic phase. This led to an estimation of the minimum temperature interval
∆T = 1022 ± 143 K.

Considering the extreme solidification lengths lsol = 11.5 ± 8.5 µm, and the minimum
temperature difference between melt and solid ∆T = 1022 ± 143 K, the range of the
temperature gradient is in the magnitude of GT = 2 × 108 ± 1.5 × 108 K/m.

In summary, a Fermi analysis of the available data reveals the following statements
for the process conditions that led to dendrites with a secondary side arm distance of
λ2 = 175 ± 25 nm:

(i) Based on the data published in [12], the expected cooling rate is in the range of
.
T > 1 × 106 K/s;

(ii) The Feurer and Wunderlin [9] equations suggest a cooling rate in the range of

1.5 × 107 ≤
.
T ≤ 2.7 × 107 K/s and the expected solidification time is in the order

of 6.6 × 10−6 ≤ tf ≤ 1.6 × 10−5 s;
(iii) The solidification velocity V did not reach the absolute velocity where the distribution

coefficient k becomes 1;
(iv) The temperature gradient is in the magnitude of GT = 2 × 108 ± 1.5 × 108 K/m

or higher.
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Although the values show a large margin of error, they are sufficient to define the
boundary conditions for the phase field simulations.

2.2. Phase Field Simulations

The phase field-based commercial software MICRESS 6.2 [7] was used to analyze
the microstructure that is formed under the aforementioned process conditions. The
“moving_frame” option allows the use of a small simulation domain which follows the
solidification front. The movement of the simulation domain was controlled by a constant
distance between the s/l interface and the top of the domain. This distance was set to
0.5 µm. The simulation was carried out as a 2-dimensional domain with 500 × 500 cells in
x- and z-direction and a resolution of x = 0.005 µm. The optimal cell size was determined
by varying the cell size at automatic time steps. The interface mobility was constant, and
the kinetic coefficient µ between the liquid and the phases was set to 500 cm4/J·s. The
temperature gradient was implemented in z-direction. The primary Cr phase was assumed
to be anisotropic and cubic. Table 2 summarizes the selected numerical and physical
parameters for the 2-dimensional numerical investigations.

Table 2. MICRESS, selected numerical parameters.

Numerical Parameters

domain
dimension x 500 cells

dimension (gradient direction) z 500 cells
cell size ∆x 0.005 µm

Physical Parameters

diffusion coefficient DL 1.0 × 10−9 m2/s
surface energy σs/l 1.0 × 10−5 J/cm2

temperature gradient GT variable K/cm
initial concentration C 50 at.%

entropy of fusion SfL,α 1.1 J/cm3·K

3. Results

The solidification morphology was examined in discrete steps of cooling rates of
2.5 × 105 K/s, starting from

.
T = 1 × 105 until 1 × 108 K/s including the estimated range

of the cooling rate from the previous section. For each of the cooling rates, three different
temperature gradients (GT = 6 × 106, 6 × 107, and 6 × 108 K/m) were investigated. The
results of the simulated microstructures are summarized for the same temperature gradient
but for different cooling rates.

3.1. Predicted Microstructures for GT = 6 × 108 K/m

The initial s/l interface for all numerical investigations within this work is shown in
Figure 5a. Due to the selected boundary conditions, namely, the low cooling rate and the
high-temperature gradient, no growth took place. Therefore, the initial situation is equal
to the final result of the simulation. By increasing the cooling rate, the solidification front
remained planar (Figure 5a–d). The higher the cooling rate, the larger the undercooling at
which the s/l grows.
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Figure 5. (a–d) Planar solidification morphology for different cooling rates
.
T and a temperature

gradient of GT = 6 × 108 K/m. (e–h) show a cellular solidification morphology. Since the s/l interface
temperature was below the peritectic temperature, the nucleation event of the peritectic phase was
suppressed. The size of each image is 2.5 µm × 2.5 µm.

With higher cooling rates, the s/l temperature drops below the peritectic temperature of
1632 K. In the case that the s/l interface temperature was below the peritectic temperature, the
s/l interface changed into a cellular growth condition. For cooling rates

.
T ≤ 2.5 × 106 K/s the

solidification morphology changes from planar to cellular (Figure 5e–h) because the Al-rich
melt can no longer be absorbed in the primary phase. However, since the nucleation of
the peritectic Cr5Al8 phase was not considered, these results are not realistic in the present
simulation. Hence, in the case of a nucleation event of the peritectic phase, the s/l interface
would be planar. Therefore, it can be stated that investigations on different cooling rates and
for a temperature gradient of GT = 6 × 108 K/m display a planar s/l interface within the
l/Cr region.

The effect of the “moving frame” for
.
T =2.5 × 106 K/s and GT = 6 × 108 K/m (see

Figure 5e) is visualized in Figure 6a,b. Due to the “moving_frame” option in MICRESS,
the top of the simulation domain followed the s/l interface with a distance of 0.5 µm. The
solidification length differs for each examination due to the selected parameters. Therefore,
for a better display, only the final domains of the “moving_frame” option are shown in
Figure 6. Figure 6c shows the corresponding temperature distribution over the entire
solidification length.

Crystals 2022, 12, x FOR PEER REVIEW 9 of 13 
 

 

solidification length differs for each examination due to the selected parameters. There-
fore, for a better display, only the final domains of the “moving_frame” option are shown 
in Figure 6. Figure 6c shows the corresponding temperature distribution over the entire 
solidification length. 

 

  
 

Figure 6. (a) “moving_frame” domain and the (b) the full overview of the solidification length. (c) 
shows the corresponding temperature distribution (𝑇ሶ  =2.5 × 106 K/s and GT = 6.0 × 108 K/m). 

3.2. Predicted Microstructures for GT = 6 × 107 K/m 
Investigations were carried out by using the same cooling rates as in the in the pre-

vious section but the temperature gradient GT was decreased to 6.0 × 107 K/m (Figure 7). 
All results showed cellular/dendritic solidification morphologies except for Figure 7h. 
There, the transition from a dendritic to a planar solidification morphology takes place for 
a cooling rate of 𝑇ሶ  =1 × 107 K/s. 

    

    
Figure 7. Solidification morphology as a function of the selected cooling rates 𝑇ሶ  and a uniform tem-
perature gradient of GT = 6 × 107 K/m. (a–g) show a dendritic/cellular solidification morphology. (h) 
transition from dendritic to planar growth. The images show a size of 2.5 µm × 2.5 µm. 

  

(a) 𝑇ሶ  =2.5.0×105 

K/s 

(g) 𝑇ሶ  =7.5×106 K/s (f) 𝑇ሶ  =5.0×106 K/s 

(d) 𝑇ሶ  =1.0×106 K/s (c) 𝑇ሶ  =7.5×105 K/s (b) 𝑇ሶ  =5.0×105 K/s 

(e) 𝑇ሶ  =2.5×106 K/s (h) 𝑇ሶ  =1.0×107 K/s 

(a) 𝑇ሶ  =2.5×106 K/s (b) 𝑇ሶ  =2.5×106 K/s (c) 𝑇ሶ  =2.5×106 K/s 

so
lid

ifi
ca

tio
n 

le
ng

th
 

800 nm 

Figure 6. (a) “moving_frame” domain and the (b) the full overview of the solidification length. (c)
shows the corresponding temperature distribution (

.
T =2.5 × 106 K/s and GT = 6.0 × 108 K/m).
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3.2. Predicted Microstructures for GT = 6 × 107 K/m

Investigations were carried out by using the same cooling rates as in the in the previous
section but the temperature gradient GT was decreased to 6.0 × 107 K/m (Figure 7). All
results showed cellular/dendritic solidification morphologies except for Figure 7h. There,
the transition from a dendritic to a planar solidification morphology takes place for a
cooling rate of

.
T = 1 × 107 K/s.
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Figure 7. Solidification morphology as a function of the selected cooling rates
.
T and a uniform

temperature gradient of GT = 6 × 107 K/m. (a–g) show a dendritic/cellular solidification morphology.
(h) transition from dendritic to planar growth. The images show a size of 2.5 µm × 2.5 µm.

3.3. Predicted Microstructures for GT = 6 × 106 K/m

The effect of the cooling rate on the solidification pattern are displayed in Figure 8
for a fixed temperature gradient of GT = 6 × 106 K/m. By increasing the cooling rate
from

.
T = 2.5 × 105 K/s to

.
T = 1 × 107 K/s, the solidification morphology changes from a

cellular/dendritic microstructure to a planar solidification front. Figure 8a shows a dendrite
at the left side and a cellular solidification structure in the center and right side of the image.
The cell tips seem to be growing at a lower temperature level compared to the dendritic tip.
In fact, the cells have their origin from a side branch and grew rapidly upwards.
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Figure 8. Solidification morphology for different cooling rates
.
T and a fixed temperature gradient

of GT = 6 × 106 K/m. (a,b) show a dendritic/cellular solidification morphology. (c,d) transi-
tion from dendritic to planar growth. (e–h) planar solidification front. The images show a size
of 2.5 µm × 2.5 µm.

The predefined simulation time was reached before the cell peaks achieved the same
temperature level as the dendrite peak. The transformation from a dendritic solidification
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structure to a planar one is clearly evident from Figure 8b–d. For cooling rates larger than
.
T = 1 × 106 K/s, the s/l interface is planar. The images show a size of 2.5 µm × 2.5 µm.

4. Discussion

The numerical investigations evidence the possible occurrence of planar solidification
fronts for temperature gradients in the range of 6 × 106 K/m ≤ GT ≤ 6 × 108 K/m. In
between, cellular/dendritic solidification morphologies were obtained. In the following we
gather and discuss the results in terms of (i) solidification length, (ii) solidification velocity,
and (iii) secondary arm spacing.

(i) The solidification length represents the height of the solidified structure measured from
the initial grain position to the top s/l interface position. It was determined and inves-
tigated for the different selected process conditions. Figure 9 shows the solidification
distance for a solidification time of tf = 1.1 × 10−5 s. Note, the solidification time is signif-
icantly longer than the expected solidification time of 6.6 × 10−6 ≤ tf ≤ 1.6 × 10−5 s. It
can be seen that the minimum solidification length of 3 µm and a maximum solidification
length of 6 µm, measured in Figure 1b for the cross-section, was reached for cooling rates
of

.
T > 1 × 106 K/s and temperature gradients GT ≤ 6 × 107 K/m. The solidification

time could not be determined experimentally. However, it can be stated with confidence
that the observed structure (Figure 1b) could only result from growth occurring under a
cooling rate

.
T < 6 × 108 K/m.
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Figure 9. Solidification length obtained for a solidification time of tf = 1.1 × 10−5 s. The gray shaded
box covers a solidification length of 3 ≤ L ≤ 6 µm measured in the experimental dendrite displayed
in Figure 1b.

(ii) Regardless of the process parameters selected, the obtained solidification velocities
(4.7 × 105 µm/s for GT = 6 × 106 in Figure 10) were an order of magnitude lower than
the absolute velocity Va ≥ 2.0 × 106 µm/s (Equation (3)). Therefore, the observed
dendritic solidification could not have happened under rapid solidification condi-
tions [10]. In other words, the solidification phenomena in the present cathode spot
crater is not concerned by solute trapping, which decreases solute partitioning and
alters equilibrium solidification velocity-undercooling relationships.
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(iii) The growth of secondary arms is triggered by perturbation of the s/l interface at the
close vicinity to the dendrite tips. These arms undergo a process from cell-like to
dendritic growth and some were eliminated due to competition with their neighbors.
Later, a ripening process causes the secondary arms to change with time into coarser,
less branched, and more widely-spaced ones. Furthermore, it is possible that the
cooling rate during the numerical investigations to a planer front at steady-state
conditions and the experimentally obtained dendrites were in a transition status.
Due to their time-dependence, the dendritic side arm distances were evaluated at
different times to determine an average secondary DAS (Figure 11). The regress-
ing line suggests that a cooling rate of about

.
T = 3 × 105 K/s for a temperature

gradient GT = 6 × 107 K/m was necessary to obtain the secondary arm spacing of
λ2 = 1.75 × 10−7 m observed experimentally.
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Figure 11. Secondary arm spacing as a function of cooling rate. The magnitude of the error bar
is reflected in the size of the rectangle. A cooling rate of about

.
T = 3 × 105 K/s for a temperature

gradient GT = 6 × 107 K/m was necessary to obtain the secondary arm spacing of λ2 = 175 nm
observed experimentally.

By comparing the prerequisites such as solidification length, the solidification speed,
and the dendrite spacing, the present process conditions could be determined with relative
confidence. It shows that dendrites with a secondary DAS of λ2 = 175 nm seem to be
formed by a cooling rate of

.
T = 3 × 105 K/s and a temperature gradient GT = 6 × 107 K/m.
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5. Summary and Conclusions

In a cathodic arc plasma, cathode spots are ignited all over the cathode’s surface.
Consequently, the surface was re-melted and re-solidified due to a multitude of cathode
spot events. This succession of local melting-solidification lead to the formation of several
solidification layers, where dendritic solidification morphologies were clearly observed.

In this work, several numerical investigations were performed to estimate the thermal
conditions for that different cooling rates and temperature gradients were investigated.
The results exhibit that the melted layer at the cathode spot re-solidified dendritically
under a cooling rate in the order of

.
T = 3 × 105 K/s and a temperature gradient of about

GT = 6 × 107 K/m.
The importance of this work is that our thermal results provide excellent data for the

validation of numerical models. Such numerical models were recently used to describe the
formation and development of a cathode spot on different alloys in a vacuum arc [13–17].
These models include hydrodynamic equations and the heat transfer equation.
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