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Modified Shallow Water
Equations With Application
for Horizontal Centrifugal
Casting of Rolls
A numerical model based on the shallow water equations (SWE) was proposed to simu-
late the two-dimensional (2D) average flow dynamics of the liquid metal spreading inside
a horizontally rotating mold. The SWE were modified to account for the forces, such as
the centrifugal force, Coriolis force, shear force with the mold wall, and gravity. In addi-
tion, inherent vibrations caused by a poor roundness of the mold and the mold deforma-
tion due to temperature gradients were applied explicitly by perturbing the gravity and
the axis bending, respectively. Several cases were studied with the following initial condi-
tions: a constant average height of the liquid metal (5, 10, 20, 30, and 40 mm) patched as
a flat or a perturbed surface. The angular frequency X of the mold (11150–3200) was
71.2 (or 30) rad/s. Results showed various wave patterns propagating on the free surface.
In early stages, a single longitudinal wave moved around the circumference. As the time
proceeded, it slowly diminished and waves traveled mainly in the axial direction. It was
found that the mean amplitude of the oscillations grows with the increasing liquid height.
[DOI: 10.1115/1.4030760]

1 Introduction

The horizontal centrifugal casting (HSC) is a casting process
that has several advantages over the traditional gravity casting
processes. The schematic of the HSC process is shown in Fig. 1.
Centrifugally cast products have a high degree of metallurgical
purity and homogeneous microstructure. A significant gain is
observed for the rupture strength, the rupture strain, the fatigue
resistance, and the Young’s modulus as discussed, e.g., by Shai-
lesh et al. [1]. These properties naturally depend on the centrifugal
force and thus, the best mechanical properties can be found at the
largest distance from the axis of rotation. However, a proper
selection of the angular frequency X has to be done in order to
prevent the so-called “metal raining,” i.e., metal droplets falling
down from the upper part of the mold due to a too weak centrifu-
gal acceleration. In the same time, excessive speeds can lead to
the appearance of longitudinal cracks caused by the hoop stress in
the initially solidified layer. From empirical knowledge, other
parameters have an important influence on the casting products, it
includes the pouring temperature, the pouring rate, the mold coat-
ing, etc. Recently, Chirita et al. [2] identified natural or forced
vibrations as possible additional factors to be taken into account.
Although mechanisms are not yet clear, the vibrations influence
the solidification structure and the level of porosity. Earlier, Chir-
ita et al. [3] observed a transition from the lamellar to the fibrous
morphology with the increase of the vibration amplitude. An

influence on the eutectic fraction was also observed. If the acceler-
ation related to the vibration reaches a critical magnitude, the
grains tend to coarsen. It is generally assumed that during the cen-
trifugal casting, the melt first solidifies on the mold wall, then due
to the turbulent flow, fragments are moved back into the melt and
stand as a new nucleation sites as described by Chang et al. [4]. It
is believed that vibrations can significantly enhance this grain
refining process.

In most of the scientific papers, numerical studies of the centrif-
ugal casting usually rely on commercial CFD packages. Certainly,
the most common approach for solving the free-surface flows is

Fig. 1 A schematic of the horizontal centrifugal casting of the
outer shell of a work roll
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the volume of fluid (VOF) method by Hirt and Nichols [5], which
is very robust and applicable to various free-surface flows.
Unfortunately, to accurately track the interface a very fine grid is
usually required and moreover, one has to solve the flow also in
the ambient phase, which is rather redundant in the case of the
HSC. In the paper by Keerthiprasad et al. [6], an effort for a com-
prehensive description of the flow dynamics of the melt inside the
horizontally rotating mold including the mold filling was done
using the VOF model (STAR-CD). Two phases were considered, the
liquid metal and the surrounding air. The time step was notably
large (�0.01 s), which implies a very rough calculation. Neverthe-
less, the results were found to be in quite good agreement with
experimental data. The VOF method was also used in work done
by Zagorski and Sleziona [7] to study the initial stage of mold fill-
ing during the vertical centrifugal casting of metal matrix compos-
ite reinforced with SiC. Additionally, a discrete phase model was
used to track SiC particles. The problem was solved as 2D axi-
symmetric with swirl component of velocity and all calculations
were terminated at 1 s of real-time. At a sufficiently high rotating
speed of the mold, the liquid metal rotates with the mold. There-
fore, it is convenient to solve the task in the rotating frame of ref-
erence, i.e., to take into account fictitious forces such as the
centrifugal and Coriolis force. This approach naturally allows
using much larger time steps resulting in a significant speed-up of
calculations. Recently, this solution strategy was adopted by
Kaschnitz [8], where the horizontal centrifugal pipe casting pro-
cess was solved using FLOW-3D. Although the flow algorithm does
not consider the flow within the ambient air, the normal computa-
tion still took around 20 days for a relatively rough mesh. To
overcome mesh-dependent results, the numerical model was tuned
by adjusting the viscosity, turbulent properties, and comparing nu-
merical results with the experiment. Next, the effect of fictitious
forces on the mold filling during the vertical centrifugal casting
was investigated again by using the VOF model [9]. They found
that the Coriolis force can cause remarkable variations in the flow
patterns in the casting-part-cavities of a large horizontal-section
area and directly connected to the sprue. Another recent study of
the mold filling was performed by Xu et al. [10], in which the
effect of the static and moveable filling on the temperature distri-
bution during the HSC of a work roll was studied. The second nat-
urally produces a more uniform temperature distribution, which
could lead to the elimination of the so-called sapling defects. The
flow algorithm is based on the VOF free-surface tracking method.
Since simulations were focused on the filling (�30 s), the full
HSC process (�35 mins) was not of concern and the algorithm
performance or computational times were not discussed. Fjeld and
Ludwig [11] performed a numerical study of the casting of a work
roll core. The popular VOF method was employed to track the
interface between the liquid metal and air. The remelting of the
outer shell was mainly investigated (more details related to simu-
lations of multiphase phenomena are clearly discussed in the work
by Ludwig et al. [12]).

The aim of the present model is a development of an effective
flow algorithm for tracking the free surface of a thin liquid layer
inside a horizontally rotating cylindrical mold representing the
outer shell of a work roll. Numerical simulations are focused on
the investigation of wave patterns appearing on the free surface
due to the interaction of the inertia forces including fictitious
forces and other body forces, such as the gravity and forces result-
ing from mold vibrations. In the future, the current numerical
model will be extended to account for the solidification and the
heat transfer including the radiation inside the mold. From a long-
term perspective, we target on the simulation of the full HSC pro-
cess, i.e., the casting of both the outer (the high-speed steel) and
the intermediate (the gray cast iron) layer. The HSC process is fin-
ished after approximately 35 mins when the mold is turned in the
vertical position and the gravity casting of the core takes place.
By comparing the HSC time (�35 mins) with relatively high
velocities of the liquid metal (�1 m/s), we can conclude that the
algorithm has to be extremely fast and efficient.

2 Numerical Model

The present model is based on the SWE. The SWE are widely
used for modeling purposes in oceanography and also meteorol-
ogy. Its original form can be found in the book by Leveque [13]
and are used for a mathematical description of the so-called grav-
ity waves. The SWE can be generalized to account for various
physical phenomena, such as the Coriolis force, flow over variable
topography, and bed shear stress, which are discussed, e.g., in
Dellar and Salmon [14] and Hirt and Richardson [15]. The SWE
usually refer to the modeling of the so-called gravity waves. In the
literature, the SWE can be found derived in the Cartesian coordi-
nate system as well as in the spherical coordinate system [16], but
no application of the SWE could be found for the cylindrical
geometry. Note that by using the SWE, the momentum equation
in the direction perpendicular to the underlying topography is
always omitted. In other words, under certain conditions a three-
dimensional (3D) problem can be transformed into a 2D problem,
which can still resolve the height in the vertical (or radial)
direction.

Here, we present a shallow water model for modeling the aver-
age flow dynamics of the thin liquid layer inside a horizontally
rotating mold (see Fig. 1). The SWE were derived in the rotating
frame of reference, i.e., fictitious forces were included in the
model. The SWE were further modified in order to account for the
variable topography representing the liquid/solid interface. The
solidification and heat transfer are, however, out of the scope of
this paper. A general situation is depicted in Fig. 2, in which the
parabolic velocity profile indicates the assumption of the fully
developed laminar flow.

Next, we assume a no-slip boundary condition (BC) with the
underlying topography. On the free surface, the friction with air
and surface tension effects is neglected. The liquid height h is
small compared to the internal radius R of the mold; therefore, the

Fig. 2 A schematic of a part of the HSC section
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problem can be still solved in the Cartesian coordinates (x, y) rep-
resenting the axial and tangential direction, respectively. Perhaps,
the most important assumption applies to neglecting all vertical
(or radial) components in momentum equations except the gra-
dients of the hydrostatic pressure. In the shallow water terminol-
ogy, this is often called the condition of the hydrostatic balance
discussed by Audusse et al. [17].

The continuity equation takes the form

@ hqð Þ
@t
þr � hq�uð Þ ¼ 0 (1)

where the liquid density q is a constant in the model (�6800 kg/m3),
and �u is the mass flow averaged velocity of the liquid. The momen-
tum equations can be expressed in the vectorial form as follows:

@ hq�uð Þ
@t

þ �u � r hq�uð Þð Þ þ Fc þ FC ¼ �hrpþ hlr2�uþ Fs þ Fg

(2)

where the terms on the left-hand side represent the inertia forces
including the fictitious forces. The centrifugal force Fc is derived
from the centrifugal acceleration ac given by

ac ¼ X� X� rð Þ (3)

where r is the position vector. The centrifugal force Fc always
pushes the liquid outward. For a perfectly cylindrical mold, the
only nonzero component of the centrifugal acceleration ac is the
radial component acr. The radial component acr cannot be, how-
ever, applied directly in Eq. (2). It has to be first expressed as an
equivalent hydrostatic pressure. Then, the integral of the gradient
of this hydrostatic pressure over the liquid height h gives the axial
and tangential components of the centrifugal force Fc used in Eq.
(2). The same procedure is applied on all other body forces having
a nonzero radial component. A detailed derivation of the centrifu-
gal force Fc can be found in Appendix B. The Coriolis force FC is
derived from the Coriolis acceleration aC, which depends on the
relative velocity u and is given by

aC ¼ 2X� u (4)

Unlike the centrifugal force Fc, the Coriolis force FC either pushes
the liquid inward or outward depending on the orientation of the
relative velocity u. Note that this is only true for a perfectly cylin-
drical mold and the angular frequency X parallel to the mold axis.
For more details, see Appendix C. On the right-hand side of
Eq. (2), the first two terms represent the force resulting from the
static pressure difference and the viscous force derived from the
shear stresses in the plane (x, y), respectively. Note that the vis-
cous force does not account for the shear force with the mold due

to the no-slip BC imposed. The bed shear force with the mold
depends on the parabolic velocity profile and is applied separately
denoted by Fs (Appendix F). The last term in Eq. (2) refers to the
gravity force Fg, which in the rotating frame of reference is a vec-
tor rotating in the opposite direction of the rotating mold (�X).
The final formulas for Fg used in Eq. (2) are discussed in detail in
Appendix D. In addition to the free-surface BCs and the BCs on
the liquid/solid interface both described earlier, we apply a reflec-
tive wall at the mold extremities. In Fig. 3, this corresponds to the
boundaries parallel to the circumferential position. Finally, peri-
odic boundary conditions are used at the boundaries denoting the
axial position.

3 Vibrations and Mold Deformation

The HSC of work rolls is always accompanied by inherited
vibrations induced by a static imbalance of the mold, a poor circu-
larity of rolling tracks or carrying rollers, and also by an axial
deformation of the mold due to thermal expansion effects
(Martinez et al. [18]). Fundamental principles about vibrations of
cylindrical shells are stated in Love’s [19] and Donnell’s [20]
theory both based on the thin shell equations. Each object with a
certain mass and a stiffness including the cylindrical mold prefers
to oscillate at its natural frequencies fn. Each of these frequencies
is associated with a mode shape and a damping coefficient. The
natural frequency fn is a function of the mass and the stiffness,
which depends on the dimensions of the object and the Young’s
modulus. For geometrically simple objects, such as a beam or a
cantilever, a unique mode shape m exists for each natural fre-
quency fn. This is, however, not true for cylindrical shells, for
which a unique pair of mode shapes m and n exists for each natu-
ral frequency fn as discussed in Ref. [21]. The mode shape m
refers to a number of axial half waves, whereas the mode shape n
applies to a number of circumferential full waves (Fig. 4). For a
static cylinder, each mode shape is represented by a standing

Fig. 3 A schematic of the computational domain created by
unfolding the internal cylindrical surface of the mold into the
plane (x, y)

Fig. 4 Mode shapes of a vibrating cylindrical shell: (a) axial
mode shapes and (b) circumferential mode shapes
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wave oscillating around its nodes. However, in rotating cylindrical
shells mode shapes travel and lag behind the rotation of the cylin-
der, which is called the Bryan effect [22].

Experimentally, a link between mode shapes and the vibration
recorded during the real casting was found with the help of a fre-
quency spectrum of the acceleration of the arbitrary carrying
roller measured in a horizontal plane and perpendicular to the
mold axis. An example of the experimental data is shown in Fig. 5
for a particular casting with the angular frequency X of the rotat-
ing mold corresponding to 9 Hz. The obvious harmonics are inte-
ger multiples of the angular frequency X, which implies a
qualitative connection with the mode shapes. Higher harmonics
correspond to more complicated mode shapes.

The present paper aims to study a response of the free surface
to a specific vibration mode. The study is simplified by only con-
sidering one pair of the axial and the circumferential mode shape.
We introduce the bending of the axis to reproduce the axial mode
shape (m¼ 1) (see Appendix A). The presence of the axis bending
modifies all body forces mentioned in Eq. (2) (a derivation of these
forces is detailed in Appendices B, C, and D). The circumferential
mode shape (n¼ 2) is applied directly by perturbing the gravity
with details given in Appendix E.

4 Results and Discussion

All simulations were run with constant physical properties of
the liquid metal (q¼ 6800 kg/m3 and l¼ 0.006 kg/m s). The mold
is 3.2 m long and the inner mold radius is R¼ 0.372 m. Two

different angular frequencies X were considered: 30 rad/s and
71.2 rad/s. Several liquid layer heights h were simulated (5, 10,
20, 30, and 40 mm). An initial distribution of the liquid height h
was imposed. Two distinct initial liquid height distributions were
considered, either a flat surface with a constant liquid height h or
a surface perturbed by the following function:

h ¼ �h sin p x� qð Þ2
� �

þ sin r y� sð Þ2
� �h i

(5)

where �h is the mean liquid height. Constants p, q, r, and s are 10,
0.4, 12, and 0.3, respectively. The function given by Eq. (5) was
chosen in order to perturb the free surface with different wave-
lengths in both directions, x and y. Several cases (N1–N12) corre-
sponding to different model settings (Table 1) were calculated.
The time step was held constant (Dt¼ 0.001 s) so that the local
Courant number was always smaller than 0.1 for both angular fre-
quencies X used. Second-order schemes were used for the space
and time discretization.

Examples of an instantaneous shape of the free surface are
shown in the xy-plane representing the axial and tangential direc-
tion in Figs. 6 and 7. At early stage of the simulation, a single
wave travels along the cylinder circumference. In the case without
the axis bending, the longitudinal wave does not vary along the
axial direction (Fig. 6(a)). On the contrary, the longitudinal wave
immediately responds to the nonzero axis bending and varies
along the axial direction (Fig. 6(b)). In a fully developed flow
regime, the longitudinal wave is no longer visible and a complex
wave pattern is formed (Fig. 7). Without the axis bending, the
pattern of the free surface resembles annular waves (Fig. 7(a)),
whereas with the axis bending the pattern is more chaotic
(Fig. 7(b)).

The results were compared by means of the mean amplitude
defined as

�Ah ¼
hmax � hmin

2
(6)

where hmax and hmin are the maximum and the minimum liquid
height found in the entire computational domain. Such an

Fig. 5 A frequency spectrum of the horizontally accelerating
carrying roller perpendicular to the mold axis

Table 1 List of model settings for the cases N1–N12

X
(rad/s)

h
(mm) Vibrations

Axis
bending

Initial
perturbation

N1 71.2 5 Yes No Yes

N2 10

N3 20

N4 30

N5 40

N6 5 No

N7 10

N8 30 20

N9 Yes

N10 No No

N11 Yes

N12 Yes

Fig. 6 An instantaneous shape of the free surface at 4 s for N8
and N12, respectively. (a) A constant liquid height h along the
axial direction. (b) An influence of the axis bending on the lon-
gitudinal wave formed during the early stage of the simulation.
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amplitude, however, shows strong fluctuations (a thickly fluctuat-
ing signal in Fig. 8); therefore, the resulting data were convolved
with the Gaussian kernel (a line with a circle marker in Fig. 8) to
obtain the main evolution. The evolution of the mean amplitudes
is shown in Fig. 8 for the angular frequency X of 71.2 rad/s and in
Fig. 9 for X¼ 30 rad/s. Several general features can be drawn
from the results:

(1) Mean amplitudes never drop to zero within the calculated
time range (�180 s). Certain waves survive even for small
liquid heights.

(2) A single longitudinal wave is formed in early stages due to
the gravity and the inertia interaction no matter whether the
free surface was initially perturbed or not. As the velocity
field develops, the longitudinal wave diminishes within an
apparent relaxation time ranging from 20 s to 40 s.

(3) The higher the liquid height h, the higher is the mean
amplitude of the oscillations.

(4) In all final states, waves are traveling mainly in the axial
direction. This transfer of momentum from the circumfer-
ential and radial directions (gravity and vibrations) to the
axial direction is due to the rotational nature of the Coriolis
force.

Almost no influence of the initial perturbation on the final state
can be observed between the cases N1 and N6 (Fig. 8). Without
the perturbation case, N7 converges toward a relatively quite state,
with the perturbation the same case converges toward a state
where the oscillations are four times larger. At lower rotation
speed, a transition between a calm and dynamic sate occurs after
60 s real-time. In Fig. 9, notice the relatively low amplitude region
from 20 s to 60 s with a sudden transition to instability at 60 s.
N10 with no vibrations involved is significantly different com-
pared to N8. By comparing case N10 with cases N8 and N9, it can
be stated that vibrations amplify and stabilize the amplitude of
oscillations of the interface. The same behavior is found for the
cases N11 and N12 both with the axis bending and without and
with the vibrations, respectively. The origin of the stabilizing
effects of the perturbations is not yet clear. From Fig. 9, it is also
evident that the axis bending significantly reduces the time neces-
sary for the transition to instability.

A verification of the SWE model was done using the hydro-
static free-surface model discussed in detail, e.g., in the paper by
Casulli [23]. The hydrostatic free-surface model is an intermediate
step between the SWE model and a fully nonhydrostatic free-
surface model such as the VOF and the level set method [24].
Unlike these generally expensive nonhydrostatic free-surface
models, the hydrostatic free-surface model neglects effects of the

Fig. 7 A fully developed pattern at 100 s for N8 and N12,
respectively. (a) A pattern resembling annular waves and (b) A
pattern disrupted by the presence of the axis bending.

Fig. 8 An evolution of the mean amplitude of the free surface
for X 5 71.2 rad/s

Fig. 9 An evolution of the mean amplitude of the free surface
for X 5 30 rad/s

Fig. 10 A verification of the SWE model; a comparison with
the hydrostatic free-surface model by Casulli [23]
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nonhydrostatic pressure. However, the efficiency of the algorithm
is greatly improved. On the other hand, when compared with the
SWE model, the complexity of the hydrostatic free-surface model
is increased by resolving horizontal velocity components along
the height of the liquid layer and reconstructing the vertical veloc-
ity components using the continuity equation. Here, the verifica-
tion was realized by comparing waves propagating after a
collapse of the liquid parabola. The initial liquid height was
defined by the following formula:

h0ðx; 0Þ ¼ 0:03þmaxð0; 0:03� 5ðx� 0:5Þ2Þ (7)

Other simulation settings were identical to those used in the afore-
mentioned simulations with the angular frequency X of 71.2 rad/s.
In Fig. 10, the dot-and-dash line represents the initial liquid height
(Eq. (7)) and the solid and the dash line show the wave pattern of
the hydrostatic free-surface model and the SWE model at 0.05 s,
respectively. The velocity vector field is naturally an output of the
hydrostatic free-surface model. Both wave patterns are in a good
agreement, despite a little phase error caused by the complete fric-
tion matrix used in the hydrostatic free-surface model.

5 Conclusions and Future Prospects

A shallow water model (SWE) for the flow of liquid metal layer
on the inside surface of a rotating cylinder was developed. The
objective was to study wave patterns of the free surface, wave
birth, propagation, and death. Besides, the aim was also to study a
response of the system on different initial conditions, i.e., the ini-
tial liquid height was either constant or perturbed using a sinelike
function. The main assumptions of the model are: The angular fre-
quency X of the mold is so high that the fluid is mainly rotating
with the cylinder. For this reason, the model was defined in the
rotating frame of reference. A parabolic velocity profile along the
liquid height was taken into account with a no-slip boundary con-
dition on the cylindrical wall. The model was further extended in
order to account for vibrations and an axis bending. The origin of
the vibrations and the axis bending was explained by means of the
natural frequencies and the corresponding mode shapes. It was
shown that despite extremely high centrifugal forces (�100 G)
acting on a liquid layer, the interaction between the inertia, the
gravity, and the vibrations can lead to the formation of waves on
the free surface. The higher the liquid height, the more it is prone
to instabilities. The SWE model was successfully validated
against a more complex, well-established hydrostatic free-surface
model using a wave propagation test. In the future, a solidification
model will be included using two layers approach, one for the liq-
uid and one for the solidified layer by taking into account the heat
conduction inside the mold and also heat losses into the ambient
air. The magnitude of accelerations and flow velocities predicted
by the present model leads to the idea that strong fragmentation of
the solidified elements occurs. In order to take into account this
phenomenon, a three-layer model will be under consideration.
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Appendix A: Bending of Mold Axis

Since the SWE are solved in the rotating frame of reference, it
is convenient to introduce a global coordinate system CGðx0; y0; z0Þ
rotating with the angular velocity of the mold X. A deformation of
the mold axis (bending) is given by the following trigonometric
function with nodes exactly positioned in the carrying rollers:

B ¼ �A cos
px0

k

� �
(A1)

where k is the distance between the two coaxial rollers, A is the
maximum amplitude of the bending (in the simulations
A¼ 2 mm), and B is the local amplitude, which is zero in the
nodes, negative toward the mold center, and positive toward
extremities (Fig. 11). The x0 coordinate is zero at the center of the
mold. The tangent c of the deformed axis is defined by the slope
of the B, which is given by

tan h ¼ @B

@x0

¼ A
p
k

sin
px0

k

� � (A2)

The tangent c is then defined as

c ¼
1

tan h
0

2
4

3
5 (A3)

and denotes the axial direction. Similarly, in the radial direction
we can define vector r pointing outward from the x0 axis

r ¼
R sin h cos a
�R cos h cos a
�R sin a

2
4

3
5 (A4)

where R is the inner radius of the mold, and the angle a defines
the tangential position in radians around the circumference as
follows:

a ¼ y

R
(A5)

where y is the circumferential position in meters. Finally, the cross
product c� r gives a vector d representing the tangential
direction

d ¼ c� r ¼
�R sin a tan h

R sin a
�R cos h cos aþ sin h cos a tan hð Þ

2
4

3
5 (A6)

The vectors c;d; and r are normalized.Fig. 11 Schematic of vectors
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Appendix B: Centrifugal Force

In order to determine the centrifugal acceleration ac for each
point inside the mold, we need to determine its distance from the
x-axis in vectorial form. Let us call this vector as r�. The vector r�

is defined as follows:

r� ¼
0

B� R cos h cos a
�R sin a

2
4

3
5 (B1)

The vector r� has the same orientation as the vector r, i.e., from
the mold center outward. The centrifugal acceleration ac is fully
defined by the angular velocity X and the vector r� by the formula

ac ¼ X� X� r�ð Þ (B2)

where X is a vector with nonzero component only in x-direction.

X ¼
jXj
0

0

2
4

3
5 (B3)

The resulting centrifugal acceleration ac points radially outward
from the mold axis and is defined as follows:

ac ¼
0

X2 B� R cos h cos að Þ
�X2R sin a

2
64

3
75 (B4)

The centrifugal acceleration ac defined in this way cannot be,
however, directly applied in the SWE model. The vector ac has to
be transformed into the local coordinate system given by vectors
c; r, and d denoting the axial, radial, and tangential direction,
respectively (Appendix A). The axial component aca of centrifu-
gal acceleration ac is obtained by projecting it into the axial direc-
tion given by vector c, which is done simply by applying dot
product as follows:

aca ¼ ac � c (B5)

Similarly, the tangential act and the radial acr components of cen-
trifugal acceleration ac are derived as follows:

act ¼ ac � d (B6)

and

acr ¼ ac � r (B7)

respectively. After evaluating the dot product of ac and r, the radial
component acr of the centrifugal acceleration ac finally becomes:

acr ¼ X2 R sin2 a� cos h cos a B� R cos h cos að Þ
� �

(B8)

Note that acr stands for the radial component of the centrifugal
acceleration ac but only at the inner mold surface. In order to cal-
culate acr(z) as a function of radial distance z from the wall, R has
to be replaced by R� z. Then, Eq. (B8) becomes

acr zð Þ ¼ X2 R� zð Þ sin2 a

� X2 cos h cos a B� R� zð Þ cos h cos að Þ
(B9)

Since the flow (continuity and momentum equations) is solved
using the SWE, acr from Eq. (B9) has to be first expressed as a
hydrostatic pressure ph. At an arbitrary point z0 within the liquid
layer, the hydrostatic pressure ph(z0) is defined by the following
formula:

phðz0Þ ¼ �q
ðz0

hþd
acr zð Þdz (B10)

where h and d denote the height of liquid metal and the height of
solid metal, respectively. Integration of Eq. (B10) results in rather
lengthy formula and is not mentioned here. For the special case,
when there is no axis deformation (B¼ 0 and h¼ 0), the hydro-
static pressure ph at z0 reduces to

phðz0Þ ¼ �
1

2
qX2 z0 � h� dð Þ 2R� z0 � h� dð Þ (B11)

Replacing z0 with z in Eq. (B10) and integrating the gradient of
the hydrostatic pressure ph(z) over the liquid height h gives us the
force Fc with the axial and tangential component, which then can
be applied as source terms in momentum equations. This force Fc

is given by

Fc ¼ �
ðhþd

d
rphðzÞdz (B12)

where rph(z) is the gradient of hydrostatic pressure ph(z). rph(z)
has two components, axial and tangential. (The same procedure is
also applied to other forces having a nonzero component in the
radial direction z.) Let us first analyze the axial component of the
force Fc and let us again start with the special case, when there is
no axis deformation (B¼ 0 and h¼ 0). (We suppress the sub-
scripts c here and below for clarity, since we need to add other
subscripts.) In this special case, the axial component of the force
F is simplified to

Frx ¼ �qX2h R� h� dð Þ @ hþ dð Þ
@x

(B13)

The tangential component Fry is the same except that x is replaced
by y

Fry ¼ �qX2h R� h� dð Þ @ hþ dð Þ
@y

(B14)

In the general case, when the axis is deformed (B 6¼ 0 and h 6¼ 0),
the formula for the force F gets inconveniently long; nevertheless,
for the sake of completeness it is given below. We again start with
the force component Frx exploded into several terms

Frx ¼ qX2ð Bbc� b2c2R� a2R
� �

h
@ hþ dð Þ
@x

� �

þ a2 þ b2c2
� �

h2 @ hþ dð Þ
@x

� �

þ a2 þ b2c2
� �

dh
@ hþ dð Þ
@x

� �

þ 1

2

@B

@x
bc h2
� �

þ 1

6

@c

@x
3Bb� 6b2cR
� �

h2
� �

þ 1

6

@c

@x
4b2c h3

� �

þ 1

6

@c

@x
6b2c dh2

� �
Þ (B15)

where a, b, and c are substitutions for sin a; cos a; and cos h,
respectively. These substitutions are also used in the definition of
the force component Fry, which is given by
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Fry ¼ qX2ð Bbc� b2c2R� a2R
� �

h
@ hþ dð Þ
@y

� �

þ a2 þ b2c2
� �

h2 @ hþ dð Þ
@y

� �

þ a2 þ b2c2
� �

dh
@ hþ dð Þ
@y

� �

� @a

@y
aR h2
� �

þ 2

3

@a

@y
a h3
� �

þ @a

@y
a dh2
� �

þ 1

6

@b

@y
3Bc� 6bc2R
� �

h2
� �

þ 1

6

@b

@y
4bc2 h3

� �

þ 1

6

@b

@y
6bc2 dh2

� �
Þ (B16)

Let us try to check the correctness of Eqs. (B15) and (B16) by set-
ting B and h again equal to zero (c ¼ cos h ¼ 1), which means the
mold axis is perfectly straight. Last four terms in Eq. (B15) cancel
out and the equation reduces to Eq. (B13). Regarding Eq. (B16),
last six terms also cancel out and the equation reduces to
Eq. (B14).

To summarize, the radial component of centrifugal acceleration
ac cannot be applied directly. It has to be expressed first as a
hydrostatic pressure, then gradient of this pressure has to be calcu-
lated in tangential and axial direction. Finally, both components
of pressure gradient have to be integrated over the liquid height h.
The corresponding results than represent momentum source terms
due to the radial component of centrifugal acceleration ac.

In addition to the radial component, the centrifugal acceleration
ac can generally have also components in the tangential and the
axial direction. The derivation of corresponding momentum sour-
ces is straightfoward and easier than in the previous case of acr,
since neither a computation of hydrostatic pressure nor its gradient
is needed. The momentum source term for the axial direction
resulting from the axial component of ac takes the following
form:

Fax ¼
ðhþd

d
qacadz (B17)

where aca is the axial component of the centrifugal acceleration
ac. Similarly, the momentum source term for the tangential direc-
tion resulting from the tangential component of ac is given by

Fty ¼
ðhþd

d
qactdz (B18)

After the integration of Eq. (B17), Fax becomes

Fax ¼ qX2 1

cj j ð Be� bdeRð Þ hð Þ

þ 1

2
bdeð Þ h2

� �
þ bdeð Þ dh2

� �
Þ (B19)

where b, d, and e are substitutions for cos a; cos h; and tan h,
respectively. For a mold without the axis bending h¼ 0, then
tan h ¼ 0 and thus, Fax is zero. Similarly, after the integration of
Eq. (B18), Fty becomes

Fty ¼ qX2 aR

dj j ð Bþ befRð Þ hð Þ

� 1

2
befð Þ h2

� �
� befð Þ dh2

� �
Þ (B20)

where a, b, e, and f are substitutions for sin a; cos a;
tan h; and sin h, respectively. In Eqs. (B19) and (B20), cj j and dj j
correspond to vectors defined in Eqs. (A3) and (A6), respectively,
i.e., those not normalized yet. Note again that for a mold without
the axis bending tan h ¼ 0 and thus, Fty is zero.

Appendix C: Coriolis Force

The general vector formula for the Coriolis acceleration aC is

aC ¼ �2X� u (C1)

where X is the angular velocity described in Appendix B and u is
the relative velocity defined in the global coordinate system
CGðx0; y0; z0Þ. The components of the Coriolis acceleration aC in
the global coordinate system CG are

aC ¼
0

aCy0

aCz0

2
64

3
75 (C2)

The x-component aCx0 is zero because the angular velocity X is
parallel to the x0 axis. The relative velocity u is computed in the
local coordinate system CLðc;d; rÞ with the following nonzero
components:

v ¼
ux

uy

0

2
64

3
75 (C3)

One of the assumptions of the SWE model is a negligible flux in
the radial direction and thus, the radial component uz of the rela-
tive velocity u is zero. In order to transform the Coriolis accelera-
tion aC into momentum source terms it is first projected onto the
vectors c;d; andr as it was done for the centrifugal acceleration ac

in Appendix B. After the projection the Coriolis acceleration aC

in the local coordinate system, CL becomes:

aC ¼
aCa

aCt

aCr

2
4

3
5 ¼ aC � c

aC � d
aC � r

2
4

3
5 (C4)

First, the axial component aCa of the Coriolis acceleration aC is
expressed as

aCa ¼ 0cx0 þ aCy0cy0 þ aCz00

¼ 2Xuycy0dz0 (C5)

after the substitution for cy0 and dz0 from Eqs. (A3) and (A6),
respectively, Eq. (C5) would expand into an inconveniently long
term; hence, it is not shown here. Similar relations can be found
for the tangential aCd and the radial aCr components of the Corio-
lis acceleration aC, given by

aCt ¼ 0dx0 þ aCy0dy0 þ aCz0dz0

¼ �2Xuxcy0dz0 (C6)
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and
aCr ¼ 0rx0 þ aCy0ry0 þ aCz0rz0

¼ 2X uydz0ry0 � uxrz0cy0 � uydy0rz0
� �

(C7)

respectively. The axial ux and the tangential uy components
(Eq. (C3)) of the relative velocity u of the liquid are functions of
the radial coordinate z and resemble the parabolic velocity profile
with the no-slip BC on the mold wall (or the solid) and the zero
stress on the free surface. The axial component ux(z) can be
expressed as a function of the radial coordinate z and the axial
component of the mass averaged velocity �ux as follows:

ux zð Þ ¼ � 3�ux d� zð Þ dþ 2h� zð Þ
2h2

(C8)

In a similar way, the tangential component uy(z) can be written.
Substituting uy(z) into Eq. (C5) and applying the same integral as
in Eq. (B17) lead to the momentum source term for the axial
direction resulting from the axial component of the Coriolis accel-
eration aC

FCax ¼ �2qXbf �uyh (C9)

where b and f are cos a and sin h, respectively. In the case without
the axis bending, sin h is zero and thus, the Coriolis force in the
axial direction FCax becomes zero. Comparing Eqs. (C5) and (C6)
reveals that the momentum source term FCty in the tangential
direction resulting from the tangential component of the Coriolis
acceleration aC is very much similar, given by

FCty ¼ 2qXbf �uxh (C10)

Note again that without the axis bending (sin h ¼ 0), the Coriolis
force in the tangential direction FCty also cancels out. In addition
to FCa and FCt, the radial component FCr is derived following the
same steps that were used for the derivation of the centrifugal
force (Appendix B). Final formulas of both components, FCrx and
FCry, are

FCrx ¼ �qhX

�
d

5

2
�uy
@h

@x
þ 2�uy

@d
@x
þ 5

4
h
@�uy

@x

� �

þ af
5

2
�ux
@h

@x
þ 2�ux

@d
@x
þ 5

4
h
@�ux

@x

� �

þ 5

4
ad�ux � f �uy

� �
h
@h
@x

�
(C11)

and

FCry ¼ �qhXðd 5

2
�uy
@h

@y
þ 2�uy

@d
@y
þ 5

4
h
@�uy

@y

� �

þ af
5

2
�ux
@h

@y
þ 2�ux

@d
@y
þ 5

4
h
@�ux

@y

� �
þ 5

4R
bf �uxhÞ (C12)

respectively. The constants a, b, d, and f stand for
sin a; cos a; cos h; and sin h. In the case without the axis bending,
Eqs. (C11) and (C12) reduce to a simple formula, given by

FCrx;y ¼ �qhX
5

2
�uyrhþ 2�uyrdþ 5

4
hr�uy

� �
(C13)

Appendix D: Gravity Force

The acceleration of gravity ag is written in the global coordinate
system CGðx0; y0; z0Þ as follows:

ag ¼
0

�g cos Xtð Þ
g sin Xtð Þ

2
4

3
5 (D1)

where t is the time in seconds, and g is the magnitude of the gravi-
tational acceleration. Note that the vector ag rotates against the
angular velocity X defined by Eq. (B3), which reflects the rotating
frame of reference used. The initial position of the global coordi-
nate system CG with respect to the acceleration ag is fixed, since
any possible phase shift u0 might play a significant role only dur-
ing the very first rotations of the mold. Momentum source terms
are derived in the same way as those for the centrifugal force and
the Coriolis force. After the projection of the vector ag onto the
unit vector in the axial direction c, the resulting axial component
aga multiplied by the liquid height h and density q leads to the
following source term:

Fgax ¼ �qhgf cos Xtð Þ (D2)

which becomes zero in the case without axis bending
(f ffi sin h ¼ 0). Similarly, the source term resulting from the
tangential component agt obtained by projecting it onto the unit
vector d is

Fgty ¼ qhg b sin Xtð Þ þ ad cos Xtð Þð Þ (D3)

When the axis bending is zero, after a few trigonometric opera-
tions it reduces to

Fgty ¼ �qhg sin Xtþ að Þ (D4)

Finally, the momentum source terms resulting from the radial com-
ponent agr are obtained by integrating the gradient of the hydro-
static pressure over the liquid height, multiplying it by the density
q, and switching the sign. Both, Fgrx and Fgry can be written as

Fgrx ¼ �qhg

�
bd cos Xtð Þ � a sin Xtð Þð Þ @ hþ dð Þ

@x

� 1

2
bf cos Xtð Þh @h

@x

�
(D5)

and

Fgry ¼ �qhgð bd cos Xtð Þ � a sin Xtð Þð Þ @ hþ dð Þ
@y

� 1

2R
ad cos Xtð Þ þ b sin Xtð Þð ÞhÞ (D6)

respectively. Without the axis bending, Eq. (D5) reduces to

Fgrx ¼ �qhg cos Xtþ að Þ @ hþ dð Þ
@x

(D7)

whereas Eq. (D6) simplifies to

Fgry ¼ �qhg cos Xtþ að Þ @ hþ dð Þ
@y

þ q
h2g

2R
sin Xtþ að Þ (D8)

Appendix E: Gravity Force Perturbed Due to the

Imperfect Roundness of the Mold

Vibrations induced in the horizontally rotating mold due to the
noncircularity of the mold or the carrying rollers are taken into
account by a time-dependent perturbation of gravity
g 1þ n cos xtþ b0ð Þð Þ, where n is a nonzero real number (in the
simulations n¼ 2), x is the angular frequency of the perturbation
(in the simulations x¼ 2X), and b0 is the phase (in the simula-
tions b0¼p/2). Labeling the perturbed gravity as gp, the accelera-
tion of the perturbed gravity agp in the global coordinate system
CGðx0; y0; z0Þ can be expressed as
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agp ¼
0

�gp cos Xtð Þ
gp sin Xtð Þ

2
64

3
75 (E1)

Comparing Eq. (D1) and Eq. (E1) leads to the conclusion that
exactly the same formulas as derived in Appendix D can be used
to determine components of the gravity force perturbed due to
the imperfect roundness of the mold provided that g in Eqs.
(D2)–(D7) is replaced by gp.

Appendix F: Bed Shear Force

The viscous term in Eq. (2) does not account for the shear force
with the mold (or the solidified metal shell) following from the
assumption of the parabolic velocity profile. The bed shear force
can be, however, easily derived from the 3D stress tensor s and
applied as an additional source term in both the axial and tangen-
tial direction. The stress tensor s can be expressed as a function of
the symmetric part of the velocity gradient tensor as follows:

s ¼ �l ruþruT
� �

(F1)

which is in exploded form given by

s ¼ �l

2
@ux

@x

@uy

@x
þ @ux

@y

@uz

@x
þ @ux

@z

@ux

@y
þ @uy

@x
2
@uy

@y

@uz

@y
þ @uy

@z

@ux

@z
þ @uz

@x

@uy

@z
þ @uz

@y
2
@uz

@z

2
66666664

3
77777775

(F2)

Generally, in momentum equations the viscous acceleration as is
expressed as a divergence of the stress tensor s divided by the
density q, which for the incompressible flow results in

as ¼ �r2u

¼ � @2u

@x2
þ @

2u

@y2
þ @

2u

@z2

� �
(F3)

In Eq. (E3), the last term �@2u=@z2 is the missing part in the vis-
cous term in Eq. (2) representing components of a shear force act-
ing on a z-plane parallel to the axial and tangential direction,
respectively. In order to apply such a force in the SWE, we have
to first substitute for the velocity u from Eq. (C8) and integrate it
over the liquid height h. This leads to the final components Fsa

and Fst of the bed shear force in the axial and tangential direction

Fsa ¼ �3�
�ux

h
(F4)

and

Fst ¼ �3�
�uy

h
(F5)

respectively.
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